Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 34 tok/s
GPT-5 High 45 tok/s Pro
GPT-4o 90 tok/s
GPT OSS 120B 459 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Analytical computation of bifurcation of orbits near collinear libration point in the restricted three-body problem (2403.18237v1)

Published 27 Mar 2024 in math-ph, astro-ph.EP, and math.MP

Abstract: A unified analytical solution is presented for constructing the phase space near collinear libration points in the Circular Restricted Three-body Problem (CRTBP), encompassing Lissajous orbits and quasihalo orbits, their invariant manifolds, as well as transit and non-transit orbits. Traditional methods could only derive separate analytical solutions for the invariant manifolds of Lissajous orbits and halo orbits, falling short for the invariant manifolds of quasihalo orbits. By introducing a coupling coefficient {\eta} and a bifurcation equation, a unified series solution for these orbits is systematically developed using a coupling-induced bifurcation mechanism and Lindstedt-Poincar\'e method. Analyzing the third-order bifurcation equation reveals bifurcation conditions for halo orbits, quasihalo orbits, and their invariant manifolds. Furthermore, new families of periodic orbits similar to halo orbits are discovered, and non-periodic/quasi-periodic orbits, such as transit orbits and non-transit orbits, are found to undergo bifurcations. When {\eta} = 0, the series solution describes Lissajous orbits and their invariant manifolds, transit, and non-transit orbits. As {\eta} varies from zero to non-zero values, the solution seamlessly transitions to describe quasihalo orbits and their invariant manifolds, as well as newly bifurcated transit and non-transit orbits. This unified analytical framework provides a more comprehensive understanding of the complex phase space structures near collinear libration points in the CRTBP.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube