Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 49 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

LayoutFlow: Flow Matching for Layout Generation (2403.18187v2)

Published 27 Mar 2024 in cs.CV

Abstract: Finding a suitable layout represents a crucial task for diverse applications in graphic design. Motivated by simpler and smoother sampling trajectories, we explore the use of Flow Matching as an alternative to current diffusion-based layout generation models. Specifically, we propose LayoutFlow, an efficient flow-based model capable of generating high-quality layouts. Instead of progressively denoising the elements of a noisy layout, our method learns to gradually move, or flow, the elements of an initial sample until it reaches its final prediction. In addition, we employ a conditioning scheme that allows us to handle various generation tasks with varying degrees of conditioning with a single model. Empirically, LayoutFlow performs on par with state-of-the-art models while being significantly faster.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com