Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The operadic theory of convexity (2403.18102v1)

Published 26 Mar 2024 in math.CT, cs.IT, math.IT, and quant-ph

Abstract: In this article, we characterize convexity in terms of algebras over a PROP, and establish a tensor-product-like symmetric monoidal structure on the category of convex sets. Using these two structures, and the theory of $\scr{O}$-monoidal categories, we state and prove a Grothendieck construction for lax $\scr{O}$-monoidal functors into convex sets. We apply this construction to the categorical characterization of entropy of Baez, Fritz, and Leinster, and to the study of quantum contextuality in the framework of simplicial distributions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. “Coequalizers in categories of algebras” In Seminar on Triples and Categorical Homology Theory: ETH 1966/67, 1969, pp. 75–90 Springer
  2. John C. Baez and Alissa S. Crans “Higher-dimensional algebra. VI: Lie 2-algebras.” In Theory and Applications of Categories 12, 2004, pp. 492–538
  3. John C. Baez, Tobias Fritz and Tom Leinster “A Characterization of Entropy in Terms of Information Loss” In Entropy 13.11, 2011, pp. 1945–1957 DOI: 10.3390/e13111945
  4. Tobias Fritz “A presentation of the category of stochastic matrices”, 2009 arXiv:0902.2554 [math.CT]
  5. Tobias Fritz “Convex Spaces I: Definition and Examples”, 2015 arXiv:0903.5522 [math.MG]
  6. “On the category of props” In Applied Categorical Structures 23 Springer, 2015, pp. 543–573
  7. “Infinity properads and infinity wheeled properads” Springer, 2015
  8. Redi Haderi and Walker H. Stern “An 𝒪𝒪\mathcal{O}caligraphic_O-monoidal Grothendieck Construction” In in preparation
  9. Bart Jacobs “Duality for Convexity”, 2009 arXiv:0911.3834 [math.LO]
  10. “Simplicial distributions, convex categories and contextuality”, 2022 arXiv:2211.00571 [math.CT]
  11. Tom Leinster “An Operadic Introduction to Entropy” In The n-Category Cafe, 2011 URL: https://golem.ph.utexas.edu/category/2011/05/an_operadic_introduction_to_en.html
  12. Tom Leinster “Entropy and Diversity: The Axiomatic Approach” Cambridge University Press, 2021
  13. Tom Leinster “Higher operads, higher categories” Cambridge University Press, 2004
  14. J.P. May “Simplicial objects in algebraic topology”, Van Nostrand Mathematical Studies, No. 11 D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967, pp. vi+161
  15. “Monoidal Grothendieck Construction” In Theory and Applications of Categories 35, 2020, pp. 1159–1207 URL: http://eudml.org/doc/124264
  16. Walter D. Neumann “On the quasivariety of convex subsets of affine spaces” In Archiv der Mathematik 21.1, 1970, pp. 11–16 DOI: 10.1007/BF01220869
  17. Cihan Okay, Aziz Kharoof and Selman Ipek “Simplicial quantum contextuality” In Quantum 7, 2023, pp. 1009
  18. Cihan Okay and Walker H. Stern “Twisted simplicial distributions” In in preparation
  19. T. Świriszcz “Monadic functors and convexity” In Bulletin de l’Académie Polonaise des Sciences XXII.1, 1974, pp. 39–42
Citations (1)

Summary

We haven't generated a summary for this paper yet.