Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global Point Cloud Registration Network for Large Transformations (2403.18040v1)

Published 26 Mar 2024 in cs.CV

Abstract: Three-dimensional data registration is an established yet challenging problem that is key in many different applications, such as mapping the environment for autonomous vehicles, and modeling objects and people for avatar creation, among many others. Registration refers to the process of mapping multiple data into the same coordinate system by means of matching correspondences and transformation estimation. Novel proposals exploit the benefits of deep learning architectures for this purpose, as they learn the best features for the data, providing better matches and hence results. However, the state of the art is usually focused on cases of relatively small transformations, although in certain applications and in a real and practical environment, large transformations are very common. In this paper, we present ReLaTo (Registration for Large Transformations), an architecture that faces the cases where large transformations happen while maintaining good performance for local transformations. This proposal uses a novel Softmax pooling layer to find correspondences in a bilateral consensus manner between two point sets, sampling the most confident matches. These matches are used to estimate a coarse and global registration using weighted Singular Value Decomposition (SVD). A target-guided denoising step is then applied to both the obtained matches and latent features, estimating the final fine registration considering the local geometry. All these steps are carried out following an end-to-end approach, which has been shown to improve 10 state-of-the-art registration methods in two datasets commonly used for this task (ModelNet40 and KITTI), especially in the case of large transformations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. doi:10.1016/j.eswa.2015.08.011. URL https://linkinghub.elsevier.com/retrieve/pii/S0957417415005503
  2. doi:10.1016/j.autcon.2018.01.009. URL https://linkinghub.elsevier.com/retrieve/pii/S0926580517303990
  3. doi:10.1109/TIP.2020.3019649. URL https://linkinghub.elsevier.com/retrieve/pii/S0924271616303987https://ieeexplore.ieee.org/document/9184264/
  4. doi:10.1016/j.cviu.2018.01.008. URL http://linkinghub.elsevier.com/retrieve/pii/S1077314218300080https://linkinghub.elsevier.com/retrieve/pii/S1077314218300080
  5. doi:10.1561/2300000035. URL http://www.nowpublishers.com/article/Details/ROB-035
  6. doi:10.3390/app10217524. URL https://www.mdpi.com/2076-3417/10/21/7524
  7. doi:10.1109/IROS40897.2019.8968446. URL https://ieeexplore.ieee.org/document/8968446/
  8. doi:10.1109/3DV.2018.00092.
  9. doi:10.1109/CVPR.2015.7298925. URL http://ieeexplore.ieee.org/document/7298925/
  10. doi:10.1109/LRA.2021.3061369. URL https://ieeexplore.ieee.org/document/9361121/
  11. doi:10.1109/IJCNN52387.2021.9533295. URL https://ieeexplore.ieee.org/document/9533295/
  12. doi:10.3390/electronics11020263. URL https://www.mdpi.com/2079-9292/11/2/263
  13. doi:10.1109/TPAMI.2014.2316828. URL https://ieeexplore.ieee.org/document/6787078/
  14. doi:10.1016/j.ins.2016.01.095. URL https://linkinghub.elsevier.com/retrieve/pii/S0020025516300378
  15. doi:10.1109/CVPR.2017.16. URL http://ieeexplore.ieee.org/document/8099499/
  16. doi:10.1007/978-3-030-58558-7_43. URL https://link.springer.com/10.1007/978-3-030-58558-7_43
  17. doi:10.1109/CVPR46437.2021.01158. URL https://ieeexplore.ieee.org/document/9577271/
  18. doi:10.1145/358669.358692. URL https://dl.acm.org/doi/10.1145/358669.358692
  19. doi:10.1109/TPAMI.2010.46. URL http://www.ncbi.nlm.nih.gov/pubmed/20975122http://ieeexplore.ieee.org/document/5432191/
  20. doi:10.1007/s001380050048.
  21. doi:10.1109/CVPR42600.2020.00259. URL https://ieeexplore.ieee.org/document/9157005/
  22. arXiv:2110.01269.
  23. arXiv:2107.11992. URL http://arxiv.org/abs/2107.11992
  24. doi:10.1109/34.121791. URL http://ieeexplore.ieee.org/document/121791/
  25. doi:10.1109/ICIP46576.2022.9897800. URL https://ieeexplore.ieee.org/document/9897800/
  26. doi:10.1007/s10462-023-10486-4. URL https://link.springer.com/10.1007/s10462-023-10486-4
  27. doi:10.1109/CVPR52688.2022.01838. URL https://ieeexplore.ieee.org/document/9879147/
  28. doi:10.3390/s23249651.
  29. doi:10.1109/IROS.2016.7759602. URL http://ieeexplore.ieee.org/document/7759602/
  30. doi:10.1111/cgf.12178. URL https://onlinelibrary.wiley.com/doi/10.1111/cgf.12178
  31. doi:10.1109/34.954602. URL http://ieeexplore.ieee.org/document/954602/
  32. doi:10.1007/978-3-642-15558-1_26. URL http://link.springer.com/10.1007/978-3-642-15558-1_26
  33. doi:10.1109/3DIMPVT.2012.53. URL http://ieeexplore.ieee.org/document/6374971/
  34. doi:10.1109/ROBOT.2009.5152473. URL http://ieeexplore.ieee.org/document/5152473/
  35. arXiv:1706.02413. URL http://arxiv.org/abs/1706.02413
  36. doi:10.1007/978-3-030-01228-1_37. URL http://link.springer.com/10.1007/978-3-030-01228-1_37https://link.springer.com/10.1007/978-3-030-01228-1_37
  37. doi:10.1109/CVPR.2018.00028. URL https://ieeexplore.ieee.org/document/8578126/
  38. doi:10.1109/ICCV.2019.00905. URL https://ieeexplore.ieee.org/document/9009829/
  39. doi:10.1109/CVPR46437.2021.01560. URL https://ieeexplore.ieee.org/document/9578333/
  40. doi:10.1109/ICCV51070.2023.01618. URL https://ieeexplore.ieee.org/document/10378404/
  41. doi:10.1016/j.isprsjprs.2022.06.009. URL https://linkinghub.elsevier.com/retrieve/pii/S0924271622001666
  42. doi:10.1109/CVPR42600.2020.00722. URL https://ieeexplore.ieee.org/document/9156303/
  43. doi:10.1109/ICCV.2019.00362. URL https://ieeexplore.ieee.org/document/9009466/
  44. doi:10.1109/CVPR46437.2021.00878. URL https://ieeexplore.ieee.org/document/9578566/
  45. doi:10.1109/CVPR.2018.00284.
  46. doi:10.1109/CVPR46437.2021.00425. URL https://ieeexplore.ieee.org/document/9577334/
  47. doi:10.1109/CVPR42600.2020.01184. URL https://ieeexplore.ieee.org/document/9157132/
  48. doi:10.1016/j.patrec.2011.01.015. URL https://linkinghub.elsevier.com/retrieve/pii/S0167865511000304
  49. doi:10.1109/ICCV48922.2021.00312. URL https://ieeexplore.ieee.org/document/9709963/
  50. doi:10.1109/TPAMI.2023.3259038. URL https://ieeexplore.ieee.org/document/10076895/
  51. doi:10.1109/CVPR52688.2022.00656. URL https://ieeexplore.ieee.org/document/9880077/
  52. arXiv:2111.00231. URL http://arxiv.org/abs/2111.00231
  53. doi:10.1109/CVPR42600.2020.00435. URL https://ieeexplore.ieee.org/document/9157670/
  54. doi:10.1109/CVPR.2015.7298801. URL https://ieeexplore.ieee.org/document/7298801/

Summary

We haven't generated a summary for this paper yet.