Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond chromatic threshold via the $(p,q)$-theorem, and a sharp blow-up phenomenon (2403.17910v3)

Published 26 Mar 2024 in math.CO and math.MG

Abstract: We establish a novel connection between the well-known chromatic threshold problem in extremal combinatorics and the celebrated $(p,q)$-theorem in discrete geometry. In particular, for a graph $G$ with bounded clique number and a natural density condition, we prove a $(p,q)$-theorem for an abstract convexity space associated with $G$. Our result strengthens those of Thomassen and Nikiforov on the chromatic threshold of cliques. Our $(p,q)$-theorem can also be viewed as a $\chi$-boundedness result for (what we call) ultra maximal $K_r$-free graphs. We further show that the graphs under study are blow-ups of constant size graphs, improving a result of Oberkampf and Schacht on homomorphism threshold of cliques. Our result unravels the cause underpinning such a blow-up phenomenon, differentiating the chromatic and homomorphism threshold problems for cliques. It implies that for the homomorphism threshold problem, rather than the minimum degree condition usually considered in the literature, the decisive factor is a clique density condition on co-neighborhoods of vertices. More precisely, we show that if an $n$-vertex $K_{r}$-free graph $G$ satisfies that the common neighborhood of every pair of non-adjacent vertices induces a subgraph with $K_{r-2}$-density at least $\varepsilon>0$, then $G$ must be a blow-up of some $K_r$-free graph $F$ on at most $2{O(\frac{r}{\varepsilon}\log\frac{1}{\varepsilon})}$ vertices. Furthermore, this single exponential bound is optimal. We construct examples with no $K_r$-free homomorphic image of size smaller than $2{\Omega_r(\frac{1}{\varepsilon})}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. The chromatic thresholds of graphs. Adv. Math., 235:261–295, 2013.
  2. Transversal numbers for hypergraphs arising in geometry. Adv. in Appl. Math., 29(1):79–101, 2002.
  3. N. Alon and D. J. Kleitman. Piercing convex sets and the Hadwiger-Debrunner (p,q)𝑝𝑞(p,q)( italic_p , italic_q )-problem. Adv. Math., 96(1):103–112, 1992.
  4. Helly’s theorem: new variations and applications. In Algebraic and geometric methods in discrete mathematics. AMS special session on algebraic and geometric methods in applied discrete mathematics, San Antonio, TX, USA, January 11, 2015. Proceedings, pages 55–95. Providence, RI: American Mathematical Society (AMS), 2017.
  5. On the connection between chromatic number, maximal clique and minimal degree of a graph. Discrete Math., 8:205–218, 1974.
  6. I. Bárány. Combinatorial convexity, volume 77 of University Lecture Series. American Mathematical Society, Providence, RI, [2021] ©2021.
  7. I. Bárány and J. Matoušek. A fractional Helly theorem for convex lattice sets. Adv. Math., 174(2):227–235, 2003.
  8. I. Bárány and P. Soberón. Tverberg’s theorem is 50 years old: a survey. Bull. Amer. Math. Soc. (N.S.), 55(4):459–492, 2018.
  9. Beyond the Borsuk-Ulam theorem: the topological Tverberg story. In A journey through discrete mathematics, pages 273–341. Springer, Cham, 2017.
  10. S. Brandt. On the structure of dense triangle-free graphs. Combin. Probab. Comput., 8(3):237–245, 1999.
  11. S. Brandt. Triangle-free graphs and forbidden subgraphs. volume 120, pages 25–33. 2002. Sixth Twente Workshop on Graphs and Combinatorial Optimization (Enschede, 1999).
  12. S. Brandt and S. Thomassé. Dense triangle-free graphs are four-colorable: A solution to the Erdős-Simonovits problem. preprint, 2011.
  13. Triangle-free graphs with large degree. Combin. Probab. Comput., 6(4):381–396, 1997.
  14. The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg. Bull. Amer. Math. Soc. (N.S.), 56(3):415–511, 2019.
  15. J.-P. Doignon. Convexity in cristallographical lattices. J. Geom., 3:71–85, 1973.
  16. O. Ebsen and M. Schacht. Homomorphism thresholds for odd cycles. Combinatorica, 40(1):39–62, 2020.
  17. J. Eckhoff. Intersection properties of boxes. I. An upper-bound theorem. Israel J. Math., 62(3):283–301, 1988.
  18. J. Eckhoff. Helly, Radon, and Carathéodory type theorems. In Handbook of convex geometry, Vol. A, B, pages 389–448. North-Holland, Amsterdam, 1993.
  19. P. Erdős. Graph theory and probability. Canadian J. Math., 11:34–38, 1959.
  20. P. Erdős. On the number of complete subgraphs contained in certain graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl., 7:459–464, 1962.
  21. P. Erdős and M. Simonovits. On a valence problem in extremal graph theory. Discrete Math., 5:323–334, 1973.
  22. P. Erdős. Some recent results on extremal problems in graph theory. (Results). Theory Graphs, Int. Symp. Rome 1966, 117-123 (English), 124-130 (French) (1967)., 1967.
  23. Erdős-Hajnal conjecture for graphs with bounded VC-dimension. Discrete Comput. Geom., 61(4):809–829, 2019.
  24. W. Goddard and J. Lyle. Dense graphs with small clique number. J. Graph Theory, 66(4):319–331, 2011.
  25. H. Hadwiger and H. Debrunner. Über eine Variante zum Hellyschen Satz. Arch. Math. (Basel), 8:309–313, 1957.
  26. R. Häggkvist. Odd cycles of specified length in nonbipartite graphs. In Graph theory (Cambridge, 1981), North-Holland Math. Stud., 62, pages 89–99. 1982.
  27. D. Haussler. Sphere packing numbers for subsets of the Boolean n𝑛nitalic_n-cube with bounded Vapnik-Chervonenkis dimension. J. Combin. Theory Ser. A, 69(2):217–232, 1995.
  28. D. Haussler and E. Welzl. ϵitalic-ϵ\epsilonitalic_ϵ-nets and simplex range queries. Discrete Comput. Geom., 2(2):127–151, 1987.
  29. E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresber. Dtsch. Math.-Ver., 32:175–176, 1923.
  30. A. F. Holmsen. Large cliques in hypergraphs with forbidden substructures. Combinatorica, 40(4):527–537, 2020.
  31. A. F. Holmsen and D. Lee. Radon numbers and the fractional Helly theorem. Isr. J. Math., 241(1):433–447, 2021.
  32. G. P. Jin. Triangle-free four-chromatic graphs. Discrete Math., 145(1-3):151–170, 1995.
  33. M. Katchalski and A. Liu. A problem of geometry in ℝnsuperscriptℝ𝑛{\mathbb{R}}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Proc. Amer. Math. Soc., 75(2):284–288, 1979.
  34. S. Letzter and R. Snyder. The homomorphism threshold of {C3,C5}subscript𝐶3subscript𝐶5\{C_{3},C_{5}\}{ italic_C start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT }-free graphs. J. Graph Theory, 90(1):83–106, 2019.
  35. F. W. Levi. On Helly’s theorem and the axioms of convexity. J. Indian Math. Soc. (N.S.), 15(Part):65–76, 1951.
  36. Blow-up phenomenon via strong regularity lemma.  www.ibs.re.kr/ecopro/zixiangxu/wp-content/uploads/sites/7/2024/03/SecondProof.pdf, 2024.
  37. T. Łuczak. On the structure of triangle-free graphs of large minimum degree. Combinatorica, 26(4):489–493, 2006.
  38. T. Łuczak and S. Thomassé. Coloring dense graphs via VC-dimension. arXiv preprint, arXiv: 1007.1670, 2010.
  39. M. Malliaris and S. Shelah. Regularity lemmas for stable graphs. Trans. Amer. Math. Soc., 366(3):1551–1585, 2014.
  40. M. Malliaris and S. Shelah. Notes on the stable regularity lemma. Bull. Symb. Log., 27(4):415–425, 2021.
  41. J. Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002.
  42. J. Matoušek. Bounded VC-dimension implies a fractional Helly theorem. Discrete Comput. Geom., 31(2):251–255, 2004.
  43. S. Moran and A. Yehudayoff. On weak ϵitalic-ϵ\epsilonitalic_ϵ-nets and the Radon number. Discrete Comput. Geom., 64(4):1125–1140, 2020.
  44. V. Nikiforov. Graphs with many r𝑟ritalic_r-cliques have large complete r𝑟ritalic_r-partite subgraphs. Bull. Lond. Math. Soc., 40(1):23–25, 2008.
  45. V. Nikiforov. Chromatic number and minimum degree of Krsubscript𝐾𝑟{K}_{r}italic_K start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT-free graphs. arXiv preprint, arXiv: 1001.2070, 2010.
  46. H. Oberkampf and M. Schacht. On the structure of dense graphs with bounded clique number. Comb. Probab. Comput., 29(5):641–649, 2020.
  47. J. Pach. Graphs whose every independent set has a common neighbour. Discrete Math., 37(2-3):217–228, 1981.
  48. J. Pach and I. Tomon. Ordered graphs and large bi-cliques in intersection graphs of curves. European J. Combin., 82:102994, 12, 2019.
  49. J. Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. Math. Ann., 83(1-2):113–115, 1921.
  50. M. Sankar. Homotopy and the homomorphism threshold of odd cycles. arXiv preprint, arXiv: 2206.07525, 2022.
  51. M. Simonovits. A method for solving extremal problems in graph theory, stability problems. Theory of Graphs, Proc. Colloq. Tihany, Hungary 1966, 279-319 (1968)., 1968.
  52. E. Szemerédi. Regular partitions of graphs. Problèmes combinatoires et théorie des graphes, Orsay 1976, Colloq. int. CNRS No. 260, 399-401 (1978)., 1978.
  53. C. Thomassen. On the chromatic number of triangle-free graphs of large minimum degree. Combinatorica, 22(4):591–596, 2002.
  54. C. Thomassen. On the chromatic number of pentagon-free graphs of large minimum degree. Combinatorica, 27(2):241–243, 2007.
  55. P. Turán. Eine extremalaufgabe aus der graphentheorie. Fiz Lapok, pages 436–452, 1941.
  56. M. L. J. van de Vel. Theory of convex structures, volume 50 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, 1993.
Citations (3)

Summary

We haven't generated a summary for this paper yet.