Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Floquet analysis perspective of driven light-matter interaction models (2403.17866v1)

Published 26 Mar 2024 in quant-ph

Abstract: In this paper, we analyze the harmonically driven Jaynes-Cummings and Lipkin-Meshkov-Glick models using both numerical integration of time-dependent Hamiltonians and Floquet theory. For a separation of time-scales between the drive and intrinsic Rabi oscillations in the former model, the driving results in an effective periodic reversal of time. The corresponding Floquet Hamiltonian is a Wannier-Stark model, which can be analytically solved. Despite the chaotic nature of the driven Lipkin-Meshkov-Glick model, moderate system sizes can display qualitatively different behaviors under varying system parameters. Ergodicity arises in systems that are neither adiabatic nor diabatic, owing to repeated multi-level Landau-Zener transitions. Chaotic behavior, observed in slow driving, manifests as random jumps in the magnetization, suggesting potential utility as a random number generator. Furthermore, we discuss both models in terms of what we call Floquet Fock state lattices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proceedings of the IEEE, 51(1):89–109, 1963.
  2. The jaynes-cummings model. Journal of Modern Optics, 40(7):1195–1238, 1993.
  3. The jaynes-cummings model and its descendants. IOP ebooks; ISBN: 978-0-7503-3447-1 arXiv:2202.00330, 2022.
  4. Exploring the quantum: atoms, cavities, and photons. Oxford university press, 2006.
  5. Rainer R Schlicher. Jaynes-cummings model with atomic motion. Optics communications, 70(2):97–102, 1989.
  6. Validity of many-body approximation methods for a solvable model:(i). exact solutions and perturbation theory. Nuclear Physics, 62(2):188–198, 1965.
  7. Finite-size scaling exponents of the lipkin-meshkov-glick model. Physical review letters, 93(23):237204, 2004.
  8. Thermodynamical limit of the lipkin-meshkov-glick model. Physical review letters, 99(5):050402, 2007.
  9. S Morrison and AS Parkins. Dynamical quantum phase transitions in the dissipative lipkin-meshkov-glick model with proposed realization in optical cavity qed. Physical review letters, 100(4):040403, 2008.
  10. Jonas Larson. Circuit qed scheme for the realization of the lipkin-meshkov-glick model. Europhysics letters, 90(5):54001, 2010.
  11. Entanglement entropy in the lipkin-meshkov-glick model. Physical Review A, 71(6):064101, 2005.
  12. Martin Holthaus. Floquet engineering with quasienergy bands of periodically driven optical lattices. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(1):013001, 2015.
  13. André Eckardt. Colloquium: Atomic quantum gases in periodically driven optical lattices. Reviews of Modern Physics, 89(1):011004, 2017.
  14. The floquet engineer’s handbook. arXiv preprint arXiv:2003.08252, 2020.
  15. Jon H Shirley. Solution of the schrödinger equation with a hamiltonian periodic in time. Physical Review, 138(4B):B979, 1965.
  16. A group-theoretical approach to quantum optics: models of atom-field interactions. John Wiley & Sons, 2009.
  17. SV Prants and LS Yacoupova. The jaynes-cummings model with modulated field-atom coupling in resonator quantum electrodynamics. Journal of Modern Optics, 39(5):961–971, 1992.
  18. Amitabh Joshi and SV Lawande. Generalized jaynes-cummings models with a time-dependent atom-field coupling. Physical Review A, 48(3):2276, 1993.
  19. Destruction of coherence by scattering of radiation on atoms. Lettere al Nuovo Cimento (1971-1985), 6(8):287–291, 1973.
  20. Coherence versus incoherence: Collapse and revival in a simple quantum model. Physical Review A, 23(1):236, 1981.
  21. Fock-state-lattice approach to quantum optics. Physical Review A, 108(3):033721, 2023.
  22. Dynamics of bloch oscillations. New Journal of Physics, 6(1):2, 2004.
  23. Tightly bound electrons in a uniform electric field. Physical Review B, 8(12):5579, 1973.
  24. Some remarks on ‘superradiant’phase transitions in light-matter systems. Journal of Physics A: Mathematical and Theoretical, 50(17):174002, 2017.
  25. Quantum dynamics of an atomic bose-einstein condensate in a double-well potential. Physical Review A, 55(6):4318, 1997.
  26. H Frahm and HJ Mikeska. On the dynamics of a quantum system which is classically chaotic. Zeitschrift für Physik B Condensed Matter, 60(1):117–126, 1985.
  27. Chaos, entanglement, and decoherence in the quantum kicked top. Physical Review A, 78(4):042318, 2008.
  28. Quantum signatures of chaos in a kicked top. Nature, 461(7265):768–771, 2009.
  29. J Mumford. Many topological regions on the bloch sphere of the spin-1/2 double-kicked top. Physical Review A, 107(5):053316, 2023.
  30. Fritz Haake. Quantum signatures of chaos. Springer, 1991.
  31. Statistics of phase space localization measures and quantum chaos in the kicked top model. Physical Review E, 107(5):054213, 2023.
  32. Floquet time crystal in the lipkin-meshkov-glick model. Physical Review B, 95(21):214307, 2017.
  33. ac-driven quantum phase transition in the lipkin-meshkov-glick model. Physical Review E, 87(5):052110, 2013.
  34. Krylov complexity and dynamical phase transition in the quenched lmg model. arXiv preprint arXiv:2312.05321, 2023.
  35. Nonequilibrium quantum phase transitions in the dicke model. Physical review letters, 108(4):043003, 2012.
  36. Phase transition in the periodically pulsed dicke model. Physical Review E, 91(5):052129, 2015.
  37. Periodically and quasiperiodically driven anisotropic dicke model. Physical Review A, 108(6):063716, 2023.
  38. Coherent states: Theory and some applications. Reviews of Modern Physics, 62(4):867, 1990.
  39. Anderson transitions. Reviews of Modern Physics, 80(4):1355, 2008.
  40. Husimi distribution and phase-space analysis of a dicke-model quantum phase transition. Physical Review A, 85(5):053831, 2012.
  41. P Leboeuf and André Voros. Chaos-revealing multiplicative representation of quantum eigenstates. Journal of Physics A: Mathematical and General, 23(10):1765, 1990.
  42. Zeros of the husimi functions of the spin-boson model. Physical Review A, 46(8):4560, 1992.
  43. On the zeros of the husimi distribution. Journal of Physics A: Mathematical and General, 30(20):L677, 1997.
  44. E Serrano-Ensástiga and D Braun. Majorana representation for mixed states. Physical Review A, 101(2):022332, 2020.
  45. Coherent states and the reconstruction of pure spin states. Journal of Optics B: Quantum and Semiclassical Optics, 1(5):L5, 1999.
  46. Stellar representation of non-gaussian quantum states. Physical Review Letters, 124(6):063605, 2020.
  47. A survey on true random number generators based on chaos. Discrete Dynamics in Nature and Society, 2019:1–10, 2019.
  48. Lev Landau. Zur theorie der energieubertragung. ii. Physikalische Zeitschrift der Sowjetunion, 2:46, 1932.
  49. Clarence Zener. Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 137(833):696–702, 1932.
  50. Jonas Larson. Interaction-induced landau-zener transitions. Europhysics Letters, 107(3):30007, 2014.
  51. Photonic josephson effect, phase transitions, and chaos in optomechanical systems. Physical Review A, 84(2):021804, 2011.
  52. Chaos and the quantum phase transition in the dicke model. Physical Review E, 67(6):066203, 2003.
  53. Mesoscopic superposition states generated by synthetic spin-orbit interaction in fock-state lattices. Physical review letters, 116(22):220502, 2016.
  54. Topological phases of quantized light. National Science Review, 8(1):nwaa196, 2021.
  55. Quantum simulation in fock-state lattices. Advances in Physics: X, 9(1):2325611, 2024.
  56. Statistical properties of the localization measure of chaotic eigenstates in the dicke model. Physical Review E, 102(3):032212, 2020.
  57. Observing the quantum topology of light. Science, 378(6623):966–971, 2022.
  58. Liwei Duan. Periodic jumps in binary lattices with a static force. Physical Review B, 108(17):174306, 2023.
  59. Bloch oscillations of atoms in an optical potential. Physical Review Letters, 76(24):4508, 1996.
  60. Experimental observation of linear and nonlinear optical bloch oscillations. Physical Review Letters, 83(23):4756, 1999.
  61. Martin Holthaus. Bloch oscillations and zener breakdown in an optical lattice. Journal of Optics B: Quantum and Semiclassical Optics, 2(5):589, 2000.
  62. Observation of atomic wannier-stark ladders in an accelerating optical potential. Physical review letters, 76(24):4512, 1996.
  63. Calculation of wannier-bloch and wannier-stark states. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 4:239–246, 1998.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com