Compressed sensing enhanced by quantum approximate optimization algorithm (2403.17399v1)
Abstract: We present a framework to deal with a range of large scale compressive sensing problems using a quantum subroutine. We apply a quantum approximate optimization algorithm (QAOA) to support detection in a sparse signal reconstruction algorithm: matching pursuit. The constrained optimization required in this algorithm is difficult to handle when the size of the problem is large and constraints are given by unstructured patterns. Our framework utilizes specially designed structured constraints that are easy to manipulate and reduce the optimization problem to the solution of an Ising model which can be found using Ising solvers. In this research, we test the performance of QAOA for this purpose on a simulator of quantum computer. We observe that our method can outperform reference classical methods. Our results explore a promising path of applying quantum computers in the compressive sensing field.
- E. J. Candes and T. Tao, IEEE Trans. Inf. Theory. 51, 4203 (2005).
- D. L. Donoho, Commun. Pure. Appl. Math. 59, 907 (2006).
- E. J. Candes and T. Tao, IEEE Trans. Inf. Theory. 52, 5406 (2006).
- J. Romberg, IEEE Signal. Process. Mag. 25, 14 (2008).
- S. G. Mallat and Z. Zhang, IEEE Trans. Signal. Process. 41, 3397 (1993a).
- T. Blumensath and M. E. Davies, IEEE Trans. Signal. Process. 56, 2370 (2008).
- T. Blumensath and M. E. Davies, J. Fourier Anal. Appl. 14, 629 (2008).
- T. Zhang, IEEE Trans. Inf. Theory. 57, 6215 (2011a).
- A. Steane, Rep. Prog. Phys. 61, 117 (1998).
- L. Gyongyosi and S. Imre, Comput. Sci. Rev. 31, 51 (2019).
- T. Albash and D. A. Lidar, Rev. Mod. Phys. 90 (2018a), 10.1103/RevModPhys.90.015002.
- A. W. Harrow and A. Montanaro, Nature 549, 203 (2017).
- D. Hangleiter and J. Eisert, Rev. Mod. Phys. 95 (2023), 10.1103/RevModphys.95.035001.
- W. Roga and M. Takeoka, Sci. Rep. 10, 14739 (2020).
- J. Preskill, Quantum 2, 79+ (2018).
- T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355 (1998).
- E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum Computation by Adiabatic Evolution,” (2000), arXiv:quant-ph/0001106.
- R. P. Feynman, Found. Phys. 16, 507 (1986).
- T. Albash and D. A. Lidar, Phys. Rev. X 8 (2018b), 10.1103/PhysRevX.8.031016.
- E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate Optimization Algorithm,” (2014), arXiv:1411.4028 [quant-ph].
- S. Boulebnane and A. Montanaro, “Solving boolean satisfiability problems with the quantum approximate optimization algorithm,” (2022), arXiv:2208.06909 [quant-ph].
- L. Leone, S. F. Oliviero, L. Cincio, and M. Cerezo, “On the practical usefulness of the hardware efficient ansatz,” (2022), arXiv:2211.01477 [quant-ph].
- R. Herrman, L. Treffert, J. Ostrowski, P. C. Lotshaw, T. S. Humble, and G. Siopsis, “Globally optimizing QAOA circuit depth for constrained optimization problems,” (2021), arXiv:2108.03281 [quant-ph].
- S. Muthukrishnan, Found. Trends Theor. Comput. Sci. 1, 117 (2005).
- S. G. Mallat and Z. Zhang, IEEE Trans. Signal. Process. 41, 3397 (1993b).
- T. Zhang, IEEE Trans. Inf. Theory. 57, 6215 (2011b).
- B. T. and D. M., IEEE Trans. Signal. Process. 56, 2370 (2008).
- V. P. Gupta, Principles and applications of quantum chemistry, edited by Elsevier (Academic Press, Cambridge, Massachusetts, 2016) pp. 313–318.
- J. Huh and M.-H. Yung, Sci. Rep. 7, 7462 (2017).
- S. Foucart and H. Rauhut, in A Mathematical Introduction to Compressive Sensing, edited by S. Foucart and H. Rauhut (Springer, New York, NY, 2013) pp. 41–59.
- N. Schuch and J. I. Cirac, Phys. Rev. A 82, 012314 (2010).
- “qiskit gate set,” (2020), (url in reference file).
- A. Cervera-Lierta, Quantum 2, 114 (2018).
- “Qiskit,” (2017), https://qiskit.org.