Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disambiguate Entity Matching using Large Language Models through Relation Discovery (2403.17344v2)

Published 26 Mar 2024 in cs.DB and cs.CL

Abstract: Entity matching is a critical challenge in data integration and cleaning, central to tasks like fuzzy joins and deduplication. Traditional approaches have focused on overcoming fuzzy term representations through methods such as edit distance, Jaccard similarity, and more recently, embeddings and deep neural networks, including advancements from LLMs like GPT. However, the core challenge in entity matching extends beyond term fuzziness to the ambiguity in defining what constitutes a "match," especially when integrating with external databases. This ambiguity arises due to varying levels of detail and granularity among entities, complicating exact matches. We propose a novel approach that shifts focus from purely identifying semantic similarities to understanding and defining the "relations" between entities as crucial for resolving ambiguities in matching. By predefining a set of relations relevant to the task at hand, our method allows analysts to navigate the spectrum of similarity more effectively, from exact matches to conceptually related entities.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com