Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform Preorders and Partial Combinatory Algebras (2403.17340v1)

Published 26 Mar 2024 in math.LO, cs.LO, and math.CT

Abstract: Uniform preorders are a class of combinatory representations of Set-indexed preorders that generalize Pieter Hofstra's basic relational objects. An indexed preorder is representable by a uniform preorder if and only if it has as generic predicate. We study the $\exists$-completion of indexed preorders on the level of uniform preorders, and identify a combinatory condition (called 'relational completeness') which characterizes those uniform preorders with finite meets whose $\exists$-completions are triposes. The class of triposes obtained this way contains relative realizability triposes, for which we derive a characterization as a fibrational analogue of the characterization of realizability toposes given in earlier work. Besides relative partial combinatory algebras, the class of relationally complete uniform preorders contains filtered ordered partial combinatory algebras, and it is unclear if there are any others.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. A. Carboni and G. Rosolini. Locally cartesian closed exact completions. Journal of Pure and Applied Algebra, 154(1):103–116, 2000.
  2. N. Cutland. Computability. Cambridge University Press, Cambridge-New York, 1980. An introduction to recursive function theory.
  3. J. Frey. A fibrational study of realizability toposes. PhD thesis, Paris 7 University, 2013.
  4. J. Frey. Triposes, q-toposes and toposes. Annals of Pure and Applied Logic, 166(2):232–259, 2015.
  5. J. Frey. Characterizing partitioned assemblies and realizability toposes. Journal of Pure and Applied Algebra, 223(5):2000–2014, 2019.
  6. J. Frey. Categories of partial equivalence relations as localizations. Journal of Pure and Applied Algebra, 227(8):25, 2023. Id/No 107115.
  7. D. Figueroa and B. van den Berg. A topos for continuous logic. Theory and Applications of Categories, 38:1108–1135, 2022.
  8. E. Faber and J. van Oosten. Effective operations of type 2 in pcas. Computability, 5(2):127–146, 2016.
  9. Tripos theory. Math. Proc. Cambridge Philos. Soc., 88(2):205–232, 1980.
  10. P.J.W. Hofstra. All realizability is relative. Math. Proc. Cambridge Philos. Soc., 141(02):239–264, 2006.
  11. P. J. W. Hofstra. The Dialectica monad and its cousins. In Models, logics, and higher-dimensional categories: A tribute to the work of Mihály Makkai. Proceedings of a conference, CRM, Montréal, Canada, June 18–20, 2009, pages 107–137. Providence, RI: American Mathematical Society (AMS), 2011.
  12. P.T. Johnstone. Sketches of an elephant: a topos theory compendium. Vol. 2, volume 44 of Oxford Logic Guides. Oxford University Press, Oxford, 2002.
  13. G.M. Kelly and S. Lack. On property-like structures. Theory and Applications of Categories, 3:213–250, 1997.
  14. A. Kock. Monads for which structures are adjoint to units. Journal of Pure and Applied Algebra, 104(1):41–59, 1995.
  15. M. Maietti and G. Rosolini. Unifying exact completions. Applied Categorical Structures, page 1–10, 2012.
  16. J. Picado and A. Pultr. Frames and locales: Topology without points. Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel, 2012.
  17. D. Prawitz. Natural deduction. A proof-theoretical study, volume 3 of Acta Universitatis Stockholmiensis. Stockholm Studies in Philosophy. Almqvist & Wiksell, Stockholm, 1965.
  18. T. Streicher. Realizability. Lecture notes, available at http://www.mathematik.tu-darmstadt.de/~streicher/REAL/REAL.pdf, 2017.
  19. D. Trotta. The existential completion. Theory and Applications of Categories, 35:Paper No. 43, 1576–1607, 2020.
  20. The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.
  21. J. van Oosten. Realizability: An Introduction to its Categorical Side. Elsevier Science Ltd, 2008.
  22. V. Zöberlein. Doctrines on 2-categories. Mathematische Zeitschrift, 148:267–279, 1976.

Summary

We haven't generated a summary for this paper yet.