Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolution and Efficiency in Neural Architecture Search: Bridging the Gap Between Expert Design and Automated Optimization (2403.17012v2)

Published 11 Feb 2024 in cs.NE and cs.AI

Abstract: The paper provides a comprehensive overview of Neural Architecture Search (NAS), emphasizing its evolution from manual design to automated, computationally-driven approaches. It covers the inception and growth of NAS, highlighting its application across various domains, including medical imaging and natural language processing. The document details the shift from expert-driven design to algorithm-driven processes, exploring initial methodologies like reinforcement learning and evolutionary algorithms. It also discusses the challenges of computational demands and the emergence of efficient NAS methodologies, such as Differentiable Architecture Search and hardware-aware NAS. The paper further elaborates on NAS's application in computer vision, NLP, and beyond, demonstrating its versatility and potential for optimizing neural network architectures across different tasks. Future directions and challenges, including computational efficiency and the integration with emerging AI domains, are addressed, showcasing NAS's dynamic nature and its continued evolution towards more sophisticated and efficient architecture search methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets