Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TwinLiteNetPlus: A Stronger Model for Real-time Drivable Area and Lane Segmentation (2403.16958v1)

Published 25 Mar 2024 in cs.CV

Abstract: Semantic segmentation is crucial for autonomous driving, particularly for Drivable Area and Lane Segmentation, ensuring safety and navigation. To address the high computational costs of current state-of-the-art (SOTA) models, this paper introduces TwinLiteNetPlus (TwinLiteNet$+$), a model adept at balancing efficiency and accuracy. TwinLiteNet$+$ incorporates standard and depth-wise separable dilated convolutions, reducing complexity while maintaining high accuracy. It is available in four configurations, from the robust 1.94 million-parameter TwinLiteNet$+_{\text{Large}}$ to the ultra-compact 34K-parameter TwinLiteNet$+_{\text{Nano}}$. Notably, TwinLiteNet$+_{\text{Large}}$ attains a 92.9\% mIoU for Drivable Area Segmentation and a 34.2\% IoU for Lane Segmentation. These results notably outperform those of current SOTA models while requiring a computational cost that is approximately 11 times lower in terms of Floating Point Operations (FLOPs) compared to the existing SOTA model. Extensively tested on various embedded devices, TwinLiteNet$+$ demonstrates promising latency and power efficiency, underscoring its suitability for real-world autonomous vehicle applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. doi:10.1109/IVS.2018.8500504.
  2. doi:10.1109/TITS.2022.3195742.
  3. doi:10.3390/app12062877.
  4. doi:10.1109/MAPR59823.2023.10288646.
  5. arXiv:2203.09035.
  6. arXiv:2310.01641.
  7. doi:10.1109/CVPR.2019.00941.
  8. doi:10.1109/CVPR.2019.00326.
  9. doi:10.1109/BigData52589.2021.9671392.
  10. doi:10.1109/NIR50484.2020.9290218.
  11. doi:10.1109/VCIP.2017.8305148.
  12. doi:10.1109/IVS.2005.1505186.
  13. doi:10.1109/ITSC.2006.1707380.
  14. doi:10.1109/ICRA48891.2023.10161356.
  15. doi:10.1109/TITS.2021.3088488.
  16. arXiv:2305.08366.
  17. doi:10.1109/IVS.2019.8814181.
  18. doi:10.3390/app112210713.
  19. arXiv:2208.11434.
  20. doi:10.3390/s23052467.
  21. doi:10.1109/CVPR52688.2022.01633.
  22. arXiv:1502.03167. URL http://arxiv.org/abs/1502.03167
  23. arXiv:1502.01852. URL http://arxiv.org/abs/1502.01852
  24. doi:10.1109/CVPR42600.2020.00271.
  25. doi:10.1109/TITS.2023.3273286.
  26. doi:10.1109/ivs.2019.8814181.
  27. doi:10.1109/CAC48633.2019.8997236.
  28. doi:10.54097/hset.v34i.5489.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com