Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weak Convergence Analysis of Online Neural Actor-Critic Algorithms (2403.16825v1)

Published 25 Mar 2024 in cs.LG, math.OC, math.PR, and stat.ML

Abstract: We prove that a single-layer neural network trained with the online actor critic algorithm converges in distribution to a random ordinary differential equation (ODE) as the number of hidden units and the number of training steps $\rightarrow \infty$. In the online actor-critic algorithm, the distribution of the data samples dynamically changes as the model is updated, which is a key challenge for any convergence analysis. We establish the geometric ergodicity of the data samples under a fixed actor policy. Then, using a Poisson equation, we prove that the fluctuations of the model updates around the limit distribution due to the randomly-arriving data samples vanish as the number of parameter updates $\rightarrow \infty$. Using the Poisson equation and weak convergence techniques, we prove that the actor neural network and critic neural network converge to the solutions of a system of ODEs with random initial conditions. Analysis of the limit ODE shows that the limit critic network will converge to the true value function, which will provide the actor an asymptotically unbiased estimate of the policy gradient. We then prove that the limit actor network will converge to a stationary point.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com