Predictive Inference in Multi-environment Scenarios (2403.16336v2)
Abstract: We address the challenge of constructing valid confidence intervals and sets in problems of prediction across multiple environments. We investigate two types of coverage suitable for these problems, extending the jackknife and split-conformal methods to show how to obtain distribution-free coverage in such non-traditional, potentially hierarchical data-generating scenarios. We demonstrate a novel resizing method to adapt to problem difficulty, which applies both to existing approaches for predictive inference and the methods we develop; this reduces prediction set sizes using limited information from the test environment, a key to the methods' practical performance, which we evaluate through neurochemical sensing and species classification datasets. Our contributions also include extensions for settings with non-real-valued responses, a theory of consistency for predictive inference in these general problems, and insights on the limits of conditional coverage.
- {binproceedings}[author] \bauthor\bsnmAngelopoulos, \bfnmAnastasios\binitsA., \bauthor\bsnmCandès, \bfnmEmmanuel\binitsE. and \bauthor\bsnmTibshirani, \bfnmRyan J.\binitsR. J. (\byear2023). \btitleConformal PID Control for Time Series Prediction. In \bbooktitleAdvances in Neural Information Processing Systems 36. \endbibitem
- {barticle}[author] \bauthor\bsnmAngelopoulos, \bfnmAnastasios N\binitsA. N. and \bauthor\bsnmBates, \bfnmStephen\binitsS. (\byear2023). \btitleConformal Prediction: A Gentle Introduction. \bjournalFoundations and Trends in Machine Learning \bvolume16. \endbibitem
- {barticle}[author] \bauthor\bsnmBeery, \bfnmSara\binitsS., \bauthor\bsnmCole, \bfnmElijah\binitsE. and \bauthor\bsnmGjoka, \bfnmArvi\binitsA. (\byear2020). \btitleThe iWildCam 2020 Competition Dataset. \bjournalarXiv:2004.10340 [cs.CV]. \endbibitem
- {barticle}[author] \bauthor\bsnmCauchois, \bfnmMaxime\binitsM., \bauthor\bsnmGupta, \bfnmSuyash\binitsS. and \bauthor\bsnmDuchi, \bfnmJohn\binitsJ. (\byear2021). \btitleKnowing what you know: valid and validated confidence sets in multiclass and multilabel prediction. \bjournalJournal of Machine Learning Research \bvolume22 \bpages1–42. \endbibitem
- {binproceedings}[author] \bauthor\bsnmChernozhukov, \bfnmVictor\binitsV., \bauthor\bsnmWuthrich, \bfnmKaspar\binitsK. and \bauthor\bsnmZhu, \bfnmYinchu\binitsY. (\byear2018). \btitleExact and robust conformal inference methods for predictive machine learning with dependent data. In \bbooktitleProceedings of the Thirty First Annual Conference on Computational Learning Theory. \endbibitem
- {barticle}[author] \bauthor\bsnmDunn, \bfnmRobin\binitsR., \bauthor\bsnmWasserman, \bfnmLarry\binitsL. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2023). \btitleDistribution-Free Prediction Sets for Two-Layer Hierarchical Models. \bjournalJournal of the American Statistical Association \bvolume118 \bpages2491–2502. \endbibitem
- {binproceedings}[author] \bauthor\bsnmGibbs, \bfnmIsaac\binitsI. and \bauthor\bsnmCandès, \bfnmEmmanuel\binitsE. (\byear2021). \btitleAdaptive Conformal Inference Under Distribution Shift. In \bbooktitleAdvances in Neural Information Processing Systems 34. \endbibitem
- {barticle}[author] \bauthor\bsnmGupta, \bfnmChirag\binitsC., \bauthor\bsnmKuchibhotla, \bfnmArun K.\binitsA. K. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2022). \btitleNested conformal prediction and quantile out-of-bag ensemble methods. \bjournalPattern Recognition \bvolume127 \bpages108496. \endbibitem
- {barticle}[author] \bauthor\bsnmLee, \bfnmYonghoon\binitsY., \bauthor\bsnmBarber, \bfnmRina Foygel\binitsR. F. and \bauthor\bsnmWillett, \bfnmRebecca\binitsR. (\byear2023). \btitleDistribution-free inference with hierarchical data. \bjournalarXiv:2306.06342 [math.ST]. \endbibitem
- {barticle}[author] \bauthor\bsnmLei, \bfnmJing\binitsJ. and \bauthor\bsnmWasserman, \bfnmLarry\binitsL. (\byear2014). \btitleDistribution-free prediction bands for non-parametric regression. \bjournalJournal of the Royal Statistical Society, Series B \bvolume76 \bpages71–96. \endbibitem
- {barticle}[author] \bauthor\bsnmLoewinger, \bfnmGabriel\binitsG., \bauthor\bsnmPatil, \bfnmPrasad\binitsP., \bauthor\bsnmKishida, \bfnmKenneth T.\binitsK. T. and \bauthor\bsnmParmigiani, \bfnmGiovanni\binitsG. (\byear2021). \btitleMulti-Study Learning for Real-time Neurochemical Sensing in Humans using the “Study Strap Ensemble”. \bjournalbioRxiv. \bdoi10.1101/856385 \endbibitem
- {binproceedings}[author] \bauthor\bsnmRomano, \bfnmYaniv\binitsY., \bauthor\bsnmPatterson, \bfnmEvan\binitsE. and \bauthor\bsnmCandès, \bfnmEmmanuel J.\binitsE. J. (\byear2019). \btitleConformalized Quantile Regression. In \bbooktitleAdvances in Neural Information Processing Systems 32. \endbibitem
- {binproceedings}[author] \bauthor\bsnmRomano, \bfnmYaniv\binitsY., \bauthor\bsnmSesia, \bfnmMatteo\binitsM. and \bauthor\bsnmCandès, \bfnmEmmanuel J.\binitsE. J. (\byear2020). \btitleClassification with Valid and Adaptive Coverage. In \bbooktitleAdvances in Neural Information Processing Systems 33. \endbibitem
- {bbook}[author] \bauthor\bparticlevan der \bsnmVaart, \bfnmA. W.\binitsA. W. and \bauthor\bsnmWellner, \bfnmJ. A.\binitsJ. A. (\byear1996). \btitleWeak Convergence and Empirical Processes: With Applications to Statistics. \bpublisherSpringer, \baddressNew York. \endbibitem
- {bbook}[author] \bauthor\bsnmVovk, \bfnmVladimir\binitsV., \bauthor\bsnmGrammerman, \bfnmAlexander\binitsA. and \bauthor\bsnmShafer, \bfnmGlenn\binitsG. (\byear2005). \btitleAlgorithmic Learning in a Random World. \bpublisherSpringer. \endbibitem