Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
29 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
82 tokens/sec
GPT OSS 120B via Groq Premium
469 tokens/sec
Kimi K2 via Groq Premium
210 tokens/sec
2000 character limit reached

Predictive Inference in Multi-environment Scenarios (2403.16336v2)

Published 25 Mar 2024 in stat.ML, cs.LG, math.ST, stat.ME, and stat.TH

Abstract: We address the challenge of constructing valid confidence intervals and sets in problems of prediction across multiple environments. We investigate two types of coverage suitable for these problems, extending the jackknife and split-conformal methods to show how to obtain distribution-free coverage in such non-traditional, potentially hierarchical data-generating scenarios. We demonstrate a novel resizing method to adapt to problem difficulty, which applies both to existing approaches for predictive inference and the methods we develop; this reduces prediction set sizes using limited information from the test environment, a key to the methods' practical performance, which we evaluate through neurochemical sensing and species classification datasets. Our contributions also include extensions for settings with non-real-valued responses, a theory of consistency for predictive inference in these general problems, and insights on the limits of conditional coverage.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. {binproceedings}[author] \bauthor\bsnmAngelopoulos, \bfnmAnastasios\binitsA., \bauthor\bsnmCandès, \bfnmEmmanuel\binitsE. and \bauthor\bsnmTibshirani, \bfnmRyan J.\binitsR. J. (\byear2023). \btitleConformal PID Control for Time Series Prediction. In \bbooktitleAdvances in Neural Information Processing Systems 36. \endbibitem
  2. {barticle}[author] \bauthor\bsnmAngelopoulos, \bfnmAnastasios N\binitsA. N. and \bauthor\bsnmBates, \bfnmStephen\binitsS. (\byear2023). \btitleConformal Prediction: A Gentle Introduction. \bjournalFoundations and Trends in Machine Learning \bvolume16. \endbibitem
  3. {barticle}[author] \bauthor\bsnmBeery, \bfnmSara\binitsS., \bauthor\bsnmCole, \bfnmElijah\binitsE. and \bauthor\bsnmGjoka, \bfnmArvi\binitsA. (\byear2020). \btitleThe iWildCam 2020 Competition Dataset. \bjournalarXiv:2004.10340 [cs.CV]. \endbibitem
  4. {barticle}[author] \bauthor\bsnmCauchois, \bfnmMaxime\binitsM., \bauthor\bsnmGupta, \bfnmSuyash\binitsS. and \bauthor\bsnmDuchi, \bfnmJohn\binitsJ. (\byear2021). \btitleKnowing what you know: valid and validated confidence sets in multiclass and multilabel prediction. \bjournalJournal of Machine Learning Research \bvolume22 \bpages1–42. \endbibitem
  5. {binproceedings}[author] \bauthor\bsnmChernozhukov, \bfnmVictor\binitsV., \bauthor\bsnmWuthrich, \bfnmKaspar\binitsK. and \bauthor\bsnmZhu, \bfnmYinchu\binitsY. (\byear2018). \btitleExact and robust conformal inference methods for predictive machine learning with dependent data. In \bbooktitleProceedings of the Thirty First Annual Conference on Computational Learning Theory. \endbibitem
  6. {barticle}[author] \bauthor\bsnmDunn, \bfnmRobin\binitsR., \bauthor\bsnmWasserman, \bfnmLarry\binitsL. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2023). \btitleDistribution-Free Prediction Sets for Two-Layer Hierarchical Models. \bjournalJournal of the American Statistical Association \bvolume118 \bpages2491–2502. \endbibitem
  7. {binproceedings}[author] \bauthor\bsnmGibbs, \bfnmIsaac\binitsI. and \bauthor\bsnmCandès, \bfnmEmmanuel\binitsE. (\byear2021). \btitleAdaptive Conformal Inference Under Distribution Shift. In \bbooktitleAdvances in Neural Information Processing Systems 34. \endbibitem
  8. {barticle}[author] \bauthor\bsnmGupta, \bfnmChirag\binitsC., \bauthor\bsnmKuchibhotla, \bfnmArun K.\binitsA. K. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2022). \btitleNested conformal prediction and quantile out-of-bag ensemble methods. \bjournalPattern Recognition \bvolume127 \bpages108496. \endbibitem
  9. {barticle}[author] \bauthor\bsnmLee, \bfnmYonghoon\binitsY., \bauthor\bsnmBarber, \bfnmRina Foygel\binitsR. F. and \bauthor\bsnmWillett, \bfnmRebecca\binitsR. (\byear2023). \btitleDistribution-free inference with hierarchical data. \bjournalarXiv:2306.06342 [math.ST]. \endbibitem
  10. {barticle}[author] \bauthor\bsnmLei, \bfnmJing\binitsJ. and \bauthor\bsnmWasserman, \bfnmLarry\binitsL. (\byear2014). \btitleDistribution-free prediction bands for non-parametric regression. \bjournalJournal of the Royal Statistical Society, Series B \bvolume76 \bpages71–96. \endbibitem
  11. {barticle}[author] \bauthor\bsnmLoewinger, \bfnmGabriel\binitsG., \bauthor\bsnmPatil, \bfnmPrasad\binitsP., \bauthor\bsnmKishida, \bfnmKenneth T.\binitsK. T. and \bauthor\bsnmParmigiani, \bfnmGiovanni\binitsG. (\byear2021). \btitleMulti-Study Learning for Real-time Neurochemical Sensing in Humans using the “Study Strap Ensemble”. \bjournalbioRxiv. \bdoi10.1101/856385 \endbibitem
  12. {binproceedings}[author] \bauthor\bsnmRomano, \bfnmYaniv\binitsY., \bauthor\bsnmPatterson, \bfnmEvan\binitsE. and \bauthor\bsnmCandès, \bfnmEmmanuel J.\binitsE. J. (\byear2019). \btitleConformalized Quantile Regression. In \bbooktitleAdvances in Neural Information Processing Systems 32. \endbibitem
  13. {binproceedings}[author] \bauthor\bsnmRomano, \bfnmYaniv\binitsY., \bauthor\bsnmSesia, \bfnmMatteo\binitsM. and \bauthor\bsnmCandès, \bfnmEmmanuel J.\binitsE. J. (\byear2020). \btitleClassification with Valid and Adaptive Coverage. In \bbooktitleAdvances in Neural Information Processing Systems 33. \endbibitem
  14. {bbook}[author] \bauthor\bparticlevan der \bsnmVaart, \bfnmA. W.\binitsA. W. and \bauthor\bsnmWellner, \bfnmJ. A.\binitsJ. A. (\byear1996). \btitleWeak Convergence and Empirical Processes: With Applications to Statistics. \bpublisherSpringer, \baddressNew York. \endbibitem
  15. {bbook}[author] \bauthor\bsnmVovk, \bfnmVladimir\binitsV., \bauthor\bsnmGrammerman, \bfnmAlexander\binitsA. and \bauthor\bsnmShafer, \bfnmGlenn\binitsG. (\byear2005). \btitleAlgorithmic Learning in a Random World. \bpublisherSpringer. \endbibitem
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com