Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithms of constrained uniform approximation (2403.16330v2)

Published 24 Mar 2024 in math.NA, cs.NA, math.FA, and math.OC

Abstract: We address the problem of the best uniform approximation of a continuous function on a convex domain. The approximation is by linear combinations of a finite system of functions (not necessarily Chebyshev) under arbitrary linear constraints. By modifying the concept of alternance and of the Remez iterative procedure we present a method, which demonstrates its efficiency in numerical problems. The linear rate of convergence is proved under some favourable assumptions. A special attention is paid to systems of complex exponents, Gaussian functions, lacunar algebraic and trigonometric polynomials. Applications to signal processing, linear ODE, switching dynamical systems, and to Markov-Bernstein type inequalities are considered.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. C. Basso. Switch-mode power supplies spice simulations and practical designs. McGraw-Hill, Inc., New York, NY, USA, 1 edition, 2008.
  2. Sampling piecewise sinusoidal signals with finite rate of innovation methods, IEEE Trans. Signal Process. 58 (2010), no 2, 613-–625.
  3. G. Beylkin, L. Monzòn, On approximation of functions by exponential sums, Appl. Comput. Harmon. Anal. 19 (2005), 17-–48.
  4. F. Blanchini, D, Casagrande and S. Miani, Modal and transition dwell time computation in switching systems: a set-theoretic approach, Automatica J. IFAC, 46 (2010), no 9, 1477–1482.
  5. P.B. Borwein and T. Erdélyi Upper bounds for the derivative of exponential sums Proc. Amer. Math. Soc. 123 (1995), 1481 – 1486.
  6. P.B. Borwein and T. Erdèlyi A sharp Bernstein-type inequality for exponential sums, J.Reine Angew. Math. 476 (1996), 127–141.
  7. E.W. Cheney and H.L. Loeb, Generalized Rational Approximation, SIAM J. Numer. Anal., Series B, (1964), 11–25.
  8. Switching systems with dwell time: computing the maximal Lyapunov exponent, Nonlinear Anal. Hybrid Syst. 40 (2021), Paper No. 101021, 21 pp
  9. L. Collatz , W. Krabs, Tschebyscheffsche Approximation mit Anwendungen, Teubner Studienbücher Mathematik (TSBMA), Stuttgart, 1973.
  10. V.K. Dzyadyk and I.A. Shevchuk, Theory of uniform approximation of functions by polynomials, Walter de Gruyter, 2008.
  11. An optimal multistage stochastic gradient method for minimax problems, in 2020 59th IEEE Conference on Decision and Control (CDC), IEEE, 2020, pp. 3573–3579.
  12. J.P. Francoise, Bernstein inequalities and applications to analytic geometry and differential equations, Journal of functional analysis 146 (1997), 185–205.
  13. W. Fraser, A Survey of methods of computing minimax and near-minimax polynomial approximations for functions of a single independent variable, J. ACM 12 (1965), no 295.
  14. G.  Freud, On two polynomial inequalities, Acta Math. Acad. Sci. Hungar., 22 (1971), no 1–2, 109–116.
  15. J. C. Geromel and P. Colaneri, Stability and stabilization of continuous-time switched linear systems, SIAM J. Control Optim., 45 (2006), no 5, 1915–1930.
  16. D.V. Gorbachev, Sharp Bernstein–Nikolskii inequalities for polynomials and entire functions of exponential type, Chebyshevskii Sb., 22 (2021), no 5.
  17. L. Gurvits and A. Olshevsky, On the NP-Hardness of checking matrix polytope stability and continuous-time switching stability, IEEE Trans. Autom. Control, 54 (2009), no 2, 337–341.
  18. J.F. Huang, L. Yang, Empirical mode decomposition based on locally adaptive filters, preprint.
  19. A.C. Ionita, A.C. Antoulas, Data-driven parametrized model reduction in the Loewner framework, SIAM J. Sci. Comput. 36(3), A984–-A1007 (2014).
  20. R. Kamalov and V.Yu. Protasov, On the length of switching intervals of a stable dynamical system, Proc. Steklov Inst. Math. 321 (2023) no 1, 149–157.
  21. S. Karlin and W.J. Studden, Tchebycheff systems: with applications in analysis and statistics, Interscience, New York, 1966
  22. Regular sparse array direction of arrival estimation in one dimension, IEEE Trans. Antennas Propag. 68 (2020), no 5, 3997–4006 (2020)
  23. M.G. Krein and A.A. Nudelman, The Markov moment problem and extremal problems: ideas and problems of P.L.Cebyshev and A.A.Markov and their further development, Translations of mathematical monographs, Providence, R.I., v. 50 (1977).
  24. T. Liang, J. Stokes, Interaction matters: A note on non-asymptotic local convergence of generative adversarial networks, in The 22nd International Conference on Artificial Intelligence and Statistics, PMLR (2019), 907-–915.
  25. D. Liberzon, Switching in systems and control, Systems & Control: Foundations and Applications. Birkhäuser Boston, Inc., Boston, MA, 2003.
  26. On gradient descent ascent for nonconvex-concave minimax problems, In Proceedings of the 37th International Conference on Machine Learning (ICML 2020), 6083-–6093.
  27. Iterative filtering as an alternative algorithm for empirical mode decomposition, Adv. Adapt. Data Anal. 1 (2009), no 4, 543–560.
  28. G.G. Magaril-Ilyaev, V.M. Tikhomirov, Convex Analysis: Theory and Applications, Translations of Mathematical Monographs, Amer. Mathematical Society (2003).
  29. L. Milev and N. Naidenov, Exact Markov inequalities for the Hermite and Laguerre weights, J. Approx. Theory, 138 (2006), no 1, 87–96.
  30. A. P. Molchanov and Y. S. Pyatnitskiy. Criteria of asymptotic stability of differential and difference inclusions encountered in control theory, Systems Control Lett., 13 (1989), no 1, 59–64.
  31. The AAA algorithm for rational approximation, SIAM J.Sci. Comput. 40 (2018), no 3, A1494-–A1522.
  32. D.J. Newman, Derivative bounds for Müntz polynomials, J. Approx. Theory 18 (1976), 360–362.
  33. Solving a class of nonconvex min-max games using iterative first order methods, in Advances in Neural Information Processing Systems (2019), 14905-–14916
  34. O. Bar-Ilan, Y.C. Eldar, Sub-nyquist radar via doppler focusing, IEEE Transactions on Signal Processing, 62 (2014), no 7, 1796–1811.
  35. G. Plonka, M. Tasche, Prony methods for recovery of structured functions, GAMM Mitt. 37 (2014), no 2, 239-–258.
  36. Exact reconstruction of sparse non-harmonic signals from their Fourier coefficients, Sampling Theory, Signal Processing, and Data Analysis (2021) 19:7.
  37. V.Yu. Protasov and R. Kamalov, How do the lengths of switching intervals influence the stability of a dynamical system?, arXiv:2312.10506v1
  38. V.Yu. Protasov and R.M. Jungers, Is switching systems stability harder for continuous time systems?, Proc. IEEE Conference Decision and Control (2013), art. no. 6759964, 704–709.
  39. V.Yu. Protasov, and R.M. Jungers, Analysing the stability of linear systems via exponential Chebyshev polynomials, IEEE Trans. Autom. Control, 61 (2016), no 3, art. no. 7131458, 795–798.
  40. V.Yu. Protasov, Generalized Markov–Bernstein inequalities and stability of dynamical systems, Proc. Steklov Inst. Math. 319 (2022) no 1, 237–252.
  41. E.Ya. Remez, Sur le calcul effectiv des polynomes d’approximation des Tschebyscheff, Compt. Rend. Acade. Sc. 199, 337 (1934).
  42. R.T. Rockafellar, Convex Analysis, Princeton University Press (1979).
  43. Innovation rate sampling of pulse streams with application to ultrasound imaging, Signal Processing, IEEE Transactions on, 59 (2011), no 4, :1827–1842.
  44. V.P. Sklyarov, The sharp constant in Markov’s inequality for the Laguerre weight, Sb. Math., 200 (2009), no 6, 887-–897.
  45. G.S. Smirnov and R.G. Smirnov, Best uniform approximation of complex-valued functions by generalized polynomials having restricted ranges, J. Approx. Theory 100 (1999), 284–303.
  46. G. Szegö, On some problems of approximations, Magyar Tud. Akad. Mat. Kutató Int. Közl., 9 (1964), 3–9.
  47. N. Sukhorukova and J. Ugon, A generalisation of de la Vallée Poussin procedure to multivariate approximations, Advanc. Comput. Math., 48 (2022), no. 5
  48. Y. Hua and T.K. Sarkar. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. Acoustics, Speech and Signal Processing, IEEE Transactions on, 38 (1990), no 5, 814–824.
  49. Near-optimal local convergence of alternating gradient descent-ascent for minimax optimization, in International Conference on Art. Intel. Statistics, PMLR, 2022, pp. 7659-–7679.

Summary

We haven't generated a summary for this paper yet.