Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Engineering Safety Requirements for Autonomous Driving with Large Language Models (2403.16289v1)

Published 24 Mar 2024 in cs.AI

Abstract: Changes and updates in the requirement artifacts, which can be frequent in the automotive domain, are a challenge for SafetyOps. LLMs, with their impressive natural language understanding and generating capabilities, can play a key role in automatically refining and decomposing requirements after each update. In this study, we propose a prototype of a pipeline of prompts and LLMs that receives an item definition and outputs solutions in the form of safety requirements. This pipeline also performs a review of the requirement dataset and identifies redundant or contradictory requirements. We first identified the necessary characteristics for performing HARA and then defined tests to assess an LLM's capability in meeting these criteria. We used design science with multiple iterations and let experts from different companies evaluate each cycle quantitatively and qualitatively. Finally, the prototype was implemented at a case company and the responsible team evaluated its efficiency.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. “ISO 26262:2018 (all parts), Road Vehicles — Functional Safety,” standard, International Organization for Standardization, 2018.
  2. “ISO 21448:2022, Road Vehicles — Safety of the Intended Functionality,” standard, International Organization for Standardization, 2022.
  3. “What is DevOps?.” https://cloud.google.com/devops. Accessed: 2023-09-22.
  4. A. Nouri, C. Berger, and F. Törner, “An Industrial Experience Report about Challenges from Continuous Monitoring, Improvement, and Deployment for Autonomous Driving Features,” in Euromicro Conference on Software Engineering and Advanced Applications, pp. 358–365, 2022.
  5. M. Scholtes, L. Westhofen, L. R. Turner, K. Lotto, M. Schuldes, H. Weber, N. Wagener, C. Neurohr, M. Bollmann, F. Körtke, J. Hiller, M. Hoss, J. Bock, and L. Eckstein, “6-layer model for a structured description and categorization of urban traffic and environment,” IEEE Access, vol. 9, pp. 59131–59147, 2020.
  6. R. Johansson, “Efficient Identification of Safety Goals in the Automotive E/E Domain,” in 8th European Congress on Embedded Real Time Software and Systems (ERTS 2016), (TOULOUSE, France), Jan. 2016.
  7. A. Nouri, C. Berger, and F. Törner, “On STPA for Distributed Development of Safe Autonomous Driving: An Interview Study,” in Proceedings of the 49th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA), (DURRES, ALBANIA), Sep. 2023.
  8. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Advances in Neural Information Processing Systems (H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds.), vol. 33, pp. 1877–1901, Curran Associates, Inc., 2020.
  9. J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. Elnashar, J. Spencer-Smith, and D. C. Schmidt, “A prompt pattern catalog to enhance prompt engineering with chatgpt,” 2023.
  10. O. Zheng, M. Abdel-Aty, D. Wang, Z. Wang, and S. Ding, “Chatgpt is on the horizon: Could a large language model be suitable for intelligent traffic safety research and applications?,” 2023.
  11. Y. Fang, H. Min, X. Wu, W. Wang, X. Zhao, B. Martinez-Pastor, and R. Teixeira, “Anomaly diagnosis of connected autonomous vehicles: A survey,” Information Fusion, vol. 105, 2024. Cited by: 0.
  12. E. Lowe and L. Guvenc, “Autonomous vehicle emergency obstacle avoidance maneuver framework at highway speeds,” Electronics, vol. 12, no. 23, 2023.
  13. A. Dima, S. Lukens, M. Hodkiewicz, T. Sexton, and M. P. Brundage, “Adapting natural language processing for technical text,” Applied AI Letters, vol. 2, no. 3, 2021. Cited by: 18; All Open Access, Gold Open Access, Green Open Access.
  14. V. Bertram, M. Boß, E. Kusmenko, I. H. Nachmann, B. Rumpe, D. Trotta, and L. Wachtmeister, “Neural language models and few shot learning for systematic requirements processing in mdse,” in Proceedings of the 15th ACM SIGPLAN International Conference on Software Language Engineering, SLE 2022, (New York, NY, USA), p. 260–265, Association for Computing Machinery, 2022.
  15. Y. Qi, X. Zhao, S. Khastgir, and X. Huang, “Safety analysis in the era of large language models: A case study of stpa using chatgpt,” 2023.
  16. S. Diemert and J. H. Weber, “Can large language models assist in hazard analysis?,” 2023.
  17. A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information systems research,” MIS Quarterly, vol. 28, no. 1, pp. 75–105, 2004.
  18. R. Wieringa, Design Science Methodology for Information Systems and Software Engineering. 01 2014.
  19. P. E. Strandberg, “Ethical Interviews in Software Engineering,” in Proceedings of the ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), (Porto de Galinhas, Brazil), pp. 1–11, 2019.
  20. A. Nouri, B. Cabrero-Daniel, F. Torner, H. Sivencrona, and C. Berger, “Welcome your new ai teammate: On safety analysis by leashing large language models,” CAIN ’24, Association for Computing Machinery, 2024.
Citations (6)

Summary

We haven't generated a summary for this paper yet.