Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interference Management for Integrated Sensing and Communication Systems: A Survey (2403.16189v1)

Published 24 Mar 2024 in cs.NI

Abstract: Emerging applications such as autonomous driving and Internet of things (IoT) services put forward the demand for simutaneous sensing and communication functions in the same system. Integrated sensing and communication (ISAC) has the potential to meet the demands of ubiquitous communication and high-precision sensing due to the advantages of spectrum and hardware resource sharing, as well as the mutual enhancement of sensing and communication. However, ISAC system faces severe interference requiring effective interference suppression, avoidance, and exploitation techniques. This article provides a comprehensive survey on the interference management techniques in ISAC systems, involving network architecture, system design, signal processing, and resource allocation. We first review the channel modeling and performance metrics of the ISAC system. Then, the methods for managing self-interference (SI), mutual interference (MI), and clutter in a single base station (BS) system are summarized, including interference suppression, interference avoidance and interference exploitation methods. Furthermore, cooperative interference management methods are studied to address the cross-link interference (CLI) in a coordinated multipoint ISAC (CoMP-ISAC) system. Finally, future trends are revealed. This article may provide a reference for the study of interference management in ISAC systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (187)
  1. Y. Cui, F. Liu, X. Jing, and J. Mu, “Integrating sensing and communications for ubiquitous iot: Applications, trends, and challenges,” IEEE Network, vol. 35, no. 5, pp. 158–167, 2021.
  2. Y. Cui, W. Yuan, Z. Zhang, J. Mu, and X. Li, “On the physical layer of digital twin: An integrated sensing and communications perspective,” IEEE J. Sel. Areas Commun., 2023.
  3. R. Tallat, A. Hawbani, X. Wang, A. Al-Dubai, L. Zhao, Z. Liu, G. Min, A. Y. Zomaya, and S. H. Alsamhi, “Navigating industry 5.0: A survey of key enabling technologies, trends, challenges, and opportunities,” IEEE Commun. Surv. Tutorials., 2023.
  4. C. Ouyang, Y. Liu, and H. Yang, “MIMO-ISAC: Performance analysis and rate region characterization,” IEEE Wireless Commun. Lett., 2023.
  5. G. Locke, L. E. Strickling, and A. Secretary, “An assessment of the near-term viability of accommodating wireless broadband systems in the 1675-1710 MHz, 1755-1780 MHz, 3500-3650 MHz, and 4200-4220 MHz, 4380-4400 MHz bands,” pp. 3500–3650, October 2010.
  6. “Framework and overall objectives of the future development of IMT for 2030 and beyond,” International Telecommunication Union (ITU-R), Tech. Rep., June 2023, (Draft New Recommendation).
  7. Q. Zhang, X. Wang, Z. Li, and Z. Wei, “Design and performance evaluation of joint sensing and communication integrated system for 5G mmWave enabled CAVs,” IEEE J. Sel. Top. Signal Process., vol. 15, no. 6, pp. 1500–1514, 2021.
  8. W. Hao, H. Shi, G. Sun, and C. Huang, “Joint beamforming design for active RIS-aided THz ISAC systems with delay alignment modulation,” IEEE Wireless Commun. Lett., vol. 12, no. 10, pp. 1816–1820, 2023.
  9. L. You, J. Xiong, D. W. K. Ng, C. Yuen, W. Wang, and X. Gao, “Energy efficiency and spectral efficiency tradeoff in RIS-aided multiuser MIMO uplink transmission,” IEEE Trans. Signal Process, vol. 69, pp. 1407–1421, 2021.
  10. S. Lu, F. Liu, Y. Li, K. Zhang, and H. Huang, “Integrated sensing and communications: Recent advances and ten open challenges,” IEEE Internet Things J., pp. 1–1, 2024.
  11. C. Ouyang, Y. Liu, and H. Yang, “Performance of downlink and uplink integrated sensing and communications (ISAC) systems,” IEEE Wireless Commun. Lett., vol. 11, no. 9, pp. 1850–1854, 2022.
  12. X. Chen, Z. Feng, Z. Wei, J. A. Zhang, X. Yuan, and P. Zhang, “Concurrent downlink and uplink joint communication and sensing for 6G networks,” IEEE Trans. Veh. Technol., vol. 72, no. 6, pp. 8175–8180, 2023.
  13. M. L. Rahman, J. A. Zhang, X. Huang, Y. J. Guo, and R. W. Heath, “Framework for a perceptive mobile network using joint communication and radar sensing,” IEEE Geosci. Remote Sens. Lett., vol. 56, no. 3, pp. 1926–1941, 2020.
  14. Z. Wei, W. Jiang, Z. Feng, H. Wu, N. Zhang, K. Han, R. Xu, and P. Zhang, “Integrated sensing and communication enabled multiple base stations cooperative sensing towards 6G,” IEEE Network, pp. 1–1, 2023.
  15. H. Kim, J. Kim, and D. Hong, “Dynamic TDD systems for 5G and beyond: A survey of cross-link interference mitigation,” IEEE Commun. Surv. Tutorials., vol. 22, no. 4, pp. 2315–2348, 2020.
  16. W. Jiang, Z. Wei, Z. Feng, and X. Chen, “Integrated sensing and communication enabled sensing base station: System design, beamforming, interference cancellation and performance analysis,” 2023.
  17. J. A. Zhang, F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zheng, and A. Petropulu, “An overview of signal processing techniques for joint communication and radar sensing,” IEEE J. Sel. Top. Signal Process., vol. 15, no. 6, pp. 1295–1315, 2021.
  18. Z. Wei, H. Qu, Y. Wang, X. Yuan, H. Wu, Y. Du, K. Han, N. Zhang, and Z. Feng, “Integrated sensing and communication signals toward 5G-A and 6G: A survey,” IEEE Internet Things J., vol. 10, no. 13, pp. 11 068–11 092, 2023.
  19. X. Fang, W. Feng, Y. Chen, N. Ge, and Y. Zhang, “Joint communication and sensing toward 6G: Models and potential of using MIMO,” IEEE Internet Things J., vol. 10, no. 5, pp. 4093–4116, 2023.
  20. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, 2022.
  21. A. Li, D. Spano, J. Krivochiza, S. G. Domouchtsidis, C. G. Tsinos, C. Masouros, S. Chatzinotas, Y. Li, B. Vucetic, and B. E. Ottersten, “A tutorial on interference exploitation via symbol-level precoding: Overview, state-of-the-art and future directions,” IEEE Commun. Surv. Tutorials., vol. 22, no. 2, pp. 796–839, 2020.
  22. Z. Feng, Z. Fang, Z. Wei, X. Chen, Z. Quan, and D. Ji, “Joint radar and communication: A survey,” China Commun., vol. 17, no. 1, pp. 1–27, 2020.
  23. N. C. Luong, X. Lu, D. T. Hoang, D. Niyato, and D. I. Kim, “Radio resource management in joint radar and communication: A comprehensive survey,” IEEE Commun. Surv. Tutorials., vol. 23, no. 2, pp. 780–814, 2021.
  24. A. Liu, Z. Huang, M. Li, Y. Wan, W. Li, T. X. Han, C. Liu, R. Du, D. K. P. Tan, J. Lu, Y. Shen, F. Colone, and K. Chetty, “A survey on fundamental limits of integrated sensing and communication,” IEEE Commun. Surv. Tutorials., vol. 24, no. 2, pp. 994–1034, 2022.
  25. Y. Liu, J. Zhang, Y. Zhang, Z. Yuan, and G. Liu, “A shared cluster-based stochastic channel model for integrated sensing and communication systems,” IEEE Trans. Veh. Technol., pp. 1–13, 2023.
  26. R. Yang, C.-X. Wang, J. Huang, E.-H. M. Aggoune, and Y. Hao, “A novel 6G ISAC channel model combining forward and backward scattering,” IEEE Trans. Wireless Commun., vol. 22, no. 11, pp. 8050–8065, 2023.
  27. X. Zhao, K. Xu, S. Ma, S. Gong, G. Yang, and C. Xing, “Joint transceiver optimization for IRS-aided MIMO communications,” IEEE Trans. Commun., vol. 70, no. 5, pp. 3467–3482, 2022.
  28. J. Liu, H. Nishiyama, N. Kato, and J. Guo, “On the outage probability of device-to-device-communication-enabled multichannel cellular networks: An RSS-threshold-based perspective,” IEEE J. Sel. Areas Commun., vol. 34, no. 1, pp. 163–175, 2016.
  29. L. Lin, Q. Wu, F. Liu, and H. Yan, “Mutual information and maximum achievable rate for mobile molecular communication systems,” IEEE Trans. Nanobiosci., vol. 17, no. 4, pp. 507–517, 2018.
  30. J. Ma, G. Zhao, and Y. Li, “Soft combination and detection for cooperative spectrum sensing in cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 7, no. 11, pp. 4502–4507, 2008.
  31. R. Xie, D. Hu, K. Luo, and T. Jiang, “Performance analysis of joint range-velocity estimator with 2D-MUSIC in OFDM radar,” IEEE Trans. Signal Process., vol. 69, pp. 4787–4800, 2021.
  32. F. Xi, Y. Xiang, Z. Zhang, S. Chen, and A. Nehorai, “Joint angle and doppler frequency estimation for MIMO radar with one-bit sampling: A maximum likelihood-based method,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 6, pp. 4734–4748, 2020.
  33. S. Stein, “Algorithms for ambiguity function processing,” IEEE Trans. Acoust. Speech Signal Process., vol. 29, no. 3, pp. 588–599, 1981.
  34. C. Ouyang, Y. Liu, H. Yang, and N. Al-Dhahir, “Integrated sensing and communications: A mutual information-based framework,” IEEE Commun. Mag., vol. 61, no. 5, pp. 26–32, 2023.
  35. B. Yu, C. Qian, P. Lin, S. Shao, W. Pan, Y. Shen, S. Hu, D. Su, C. Sun, Q. Xiong, and J. Lee, “Full duplex communication with practical self-interference cancellation implementation,” in ICC 2022 - IEEE International Conference on Communications, 2022, pp. 1100–1105.
  36. C. Morgenstern, A. R. Chiriyath, A. Dutta, A. Herschfelt, Y. Rong, A. C. Molnar, A. B. Apsel, D. G. Landon, and D. W. Bliss, “Analog self-interference mitigation for IBFD, joint radar-communications in vehicular applications,” in 2022 IEEE Radar Conference (RadarConf22).   IEEE, 2022, pp. 1–6.
  37. C. W. Morgenstern, Y. Rong, A. Herschfelt, A. C. Molnar, A. B. Apsel, D. G. Landon, and D. W. Bliss, “Analog-domain self-interference cancellation for practical multi-tap full-duplex system: Theory, modeling, and algorithm,” IEEE J. Sel. Areas Commun., 2023.
  38. X. Huang and Y. J. Guo, “Radio frequency self-interference cancellation with analog least mean-square loop,” IEEE Trans. Microwave Theory Tech., vol. 65, no. 9, pp. 3336–3350, 2017.
  39. Y. Liu, P. Roblin, X. Quan, W. Pan, S. Shao, and Y. Tang, “A full-duplex transceiver with two-stage analog cancellations for multipath self-interference,” IEEE Trans. Microwave Theory Tech., vol. 65, no. 12, pp. 5263–5273, 2017.
  40. C. Baquero Barneto, T. Riihonen, M. Turunen, L. Anttila, M. Fleischer, K. Stadius, J. Ryynänen, and M. Valkama, “Full-duplex OFDM radar with LTE and 5G NR waveforms: Challenges, solutions, and measurements,” IEEE Trans. Microwave Theory Tech., vol. 67, no. 10, pp. 4042–4054, 2019.
  41. E. Ahmed and A. M. Eltawil, “All-digital self-interference cancellation technique for full-duplex systems,” IEEE Trans. Wireless Commun., vol. 14, no. 7, pp. 3519–3532, 2015.
  42. J. Li, H. Zhang, and M. Fan, “Digital self-interference cancellation based on independent component analysis for co-time co-frequency full-duplex communication systems,” IEEE Access, vol. 5, pp. 10 222–10 231, 2017.
  43. X. Huang, A. Tuyen Le, and Y. J. Guo, “Transmit beamforming for communication and self-interference cancellation in full duplex MIMO systems: A trade-off analysis,” IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3760–3769, 2021.
  44. Y. L. Sit, B. Nuss, and T. Zwick, “On mutual interference cancellation in a MIMO OFDM multiuser radar-communication network,” IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3339–3348, 2018.
  45. C. B. Barneto, S. D. Liyanaarachchi, M. Heino, T. Riihonen, and M. Valkama, “Full duplex radio/radar technology: The enabler for advanced joint communication and sensing,” IEEE Wireless Commun., vol. 28, no. 1, pp. 82–88, 2021.
  46. Z. Xiao and Y. Zeng, “Full-duplex integrated sensing and communication: Waveform design and performance analysis,” in 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP).   IEEE, 2021, pp. 1–5.
  47. A. Tang, S. Li, and X. Wang, “Self-interference-resistant ieee 802.11ad-based joint communication and automotive radar design,” IEEE J. Sel. Top. Signal Process., vol. 15, no. 6, pp. 1484–1499, 2021.
  48. Z. Wang, M. Ma, and F. Qin, “Neural-network-based nonlinear self- interference cancelation scheme for mobile stations with dual-connectivity,” IEEE Access, vol. 9, pp. 53 566–53 575, 2021.
  49. J. Bechter, F. Roos, M. Rahman, and C. Waldschmidt, “Automotive radar interference mitigation using a sparse sampling approach,” in 2017 European Radar Conference (EURAD), 2017, pp. 90–93.
  50. G. Hakobyan and B. Yang, “A novel narrowband interference suppression method for OFDM radar,” in 2016 24th European Signal Processing Conference (EUSIPCO), 2016, pp. 2230–2234.
  51. A. T. Le, L. C. Tran, X. Huang, Y. J. Guo, and J. Y. C. Vardaxoglou, “Frequency-domain characterization and performance bounds of ALMS loop for RF self-interference cancellation,” IEEE Trans. Commun., vol. 67, no. 1, pp. 682–692, 2019.
  52. M. Bernhardt, F. Gregorio, J. Cousseau, and T. Riihonen, “Self-interference cancelation through advanced sampling,” IEEE Trans. Signal Process., vol. 66, no. 7, pp. 1721–1733, 2018.
  53. A. Poon, A. Chang, H. Samavati, and S. S. Wong, “Reduction of inductive crosstalk using quadrupole inductors,” IEEE J. Solid-State Circuits., vol. 44, no. 6, pp. 1756–1764, 2009.
  54. A. Borel, V. Barzdenas, and A. Vasjanov, “Linearization as a solution for power amplifier imperfections: A review of methods,” Electronics, vol. 10, no. 9, MAY 2021.
  55. H. Luo, M. Holm, and T. Ratnarajah, “On the performance of active analog self-interference cancellation techniques for beyond 5G systems,” China Commun., vol. 18, no. 10, pp. 158–168, 2021.
  56. A. Almradi and K. A. Hamdi, “On the outage probability of MIMO full-duplex relaying: Impact of antenna correlation and imperfect CSI,” IEEE Trans. Veh. Technol., vol. 66, no. 5, pp. 3957–3965, 2017.
  57. M. M. Fadoul and C. Y. Leow, “Joint nullspace projection-based interference mitigation for full-duplex relay-assisted multicell networks,” IEEE Syst. J., vol. 14, no. 2, pp. 2392–2399, 2020.
  58. T. Riihonen, S. Werner, and R. Wichman, “Mitigation of loopback self-interference in full-duplex MIMO relays,” IEEE Trans. Signal Process., vol. 59, no. 12, pp. 5983–5993, 2011.
  59. J. W. Kwak, M. S. Sim, I.-W. Kang, J. Park, K.-K. Wong, and C.-B. Chae, “Analog self-interference cancellation with practical RF components for full-duplex radios,” IEEE Trans. Wireless Commun., 2022.
  60. J.-H. Deng, S.-H. Chen, and M.-L. Ku, “Multiuser MIMO precoders with proactive primary interference cancelation and link quality enhancement for cognitive radio relay systems,” IEEE Access, vol. 5, pp. 17 701–17 712, 2017.
  61. Y. L. Sit, L. Reichardt, C. Sturm, and T. Zwick, “Extension of the OFDM joint radar-communication system for a multipath, multiuser scenario,” in 2011 IEEE RadarCon (RADAR), 2011, pp. 718–723.
  62. Q. Wu, Z. Sun, and X. Zhou, “Interference detection and recognition based on signal reconstruction using recurrent neural network,” in 2019 IEEE Globecom Workshops (GC Wkshps), 2019, pp. 1–6.
  63. X. Jing, L. Mo, H. Liu, and C. Zhang, “Linear space-time interference alignment for K𝐾Kitalic_K-user MIMO interference channels,” IEEE Access, vol. 6, pp. 3085–3095, 2018.
  64. P. Kumari, S. A. Vorobyov, and R. W. Heath, “Adaptive virtual waveform design for millimeter-wave joint communication–radar,” IEEE Trans. Signal Process., vol. 68, pp. 715–730, 2020.
  65. Y. Li, F. Liu, Z. Du, W. Yuan, and C. Masouros, “Isac-enabled V2I networks based on 5G NR: How much can the overhead be reduced?” in 2023 IEEE International Conference on Communications Workshops (ICC Workshops), 2023, pp. 691–696.
  66. Q. Zhang, H. Sun, X. Gao, X. Wang, and Z. Feng, “Time-division ISAC enabled connected automated vehicles cooperation algorithm design and performance evaluation,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp. 2206–2218, 2022.
  67. C. Zhang, W. Yi, Y. Liu, and L. Hanzo, “Semi-integrated-sensing-and-communication (semi-ISaC): From OMA to NOMA,” IEEE Trans. Commun., 2023.
  68. J. Han, Z. Wei, L. Ma, W. Jiang, C. Pan, and Y. Wang, “A multiple access method for integrated sensing and communication enabled UAV Ad Hoc network,” in 2022 IEEE Wireless Communications and Networking Conference (WCNC), 2022, pp. 184–188.
  69. Y. Li, Z. Wei, and Z. Feng, “Joint subcarrier and power allocation for uplink integrated sensing and communication system,” IEEE Sens. J., vol. 23, no. 24, pp. 31 072–31 081, 2023.
  70. K. Wu, J. A. Zhang, X. Huang, and Y. J. Guo, “Frequency-hopping MIMO radar-based communications: An overview,” IEEE Aerosp. Electron. Syst. Mag., vol. 37, no. 4, pp. 42–54, 2022.
  71. W. Yuan, Z. Wei, S. Li, J. Yuan, and D. W. K. Ng, “Integrated sensing and communication-assisted orthogonal time frequency space transmission for vehicular networks,” IEEE J. Sel. Top. Signal Process., vol. 15, no. 6, pp. 1515–1528, 2021.
  72. X. Mu, Z. Wang, and Y. Liu, “NOMA for integrating sensing and communications towards 6G: A multiple access perspective,” IEEE Wireless Commun., pp. 1–8, 2023.
  73. M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” IEEE Commun. Surv. Tutorials., vol. 18, no. 3, pp. 1617–1655, 2016.
  74. Z. He, W. Xu, H. Shen, Y. Huang, and H. Xiao, “Energy efficient beamforming optimization for integrated sensing and communication,” IEEE Wireless Commun. Lett., vol. 11, no. 7, pp. 1374–1378, 2022.
  75. Y. Mao, O. Dizdar, B. Clerckx, R. Schober, P. Popovski, and H. V. Poor, “Rate-splitting multiple access: Fundamentals, survey, and future research trends,” IEEE Commun. Surv. Tutorials, vol. 24, no. 4, pp. 2073–2126, 2022.
  76. X. Li, Y. Zheng, J. Zhang, S. Dang, A. Nallanathan, and S. Mumtaz, “Finite SNR diversity-multiplexing trade-off in hybrid ABCom/RCom-assisted NOMA networks,” IEEE Trans. Mob. Comput., 2024.
  77. C. Xu, B. Clerckx, S. Chen, Y. Mao, and J. Zhang, “Rate-splitting multiple access for multi-antenna joint radar and communications,” IEEE J. Sel. Top. Signal Process., vol. 15, no. 6, pp. 1332–1347, 2021.
  78. X. Liu, T. Huang, N. Shlezinger, Y. Liu, J. Zhou, and Y. C. Eldar, “Joint transmit beamforming for multiuser MIMO communications and MIMO radar,” IEEE Trans. Signal Process., vol. 68, pp. 3929–3944, 2020.
  79. F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “Toward dual-functional radar-communication systems: Optimal waveform design,” IEEE Trans. Signal Process., vol. 66, no. 16, pp. 4264–4279, 2018.
  80. Z. Cheng and B. Liao, “QoS-aware hybrid beamforming and DOA estimation in multi-carrier dual-function radar-communication systems,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1890–1905, 2022.
  81. R. Liu, M. Li, Q. Liu, and A. L. Swindlehurst, “Dual-functional radar-communication waveform design: A symbol-level precoding approach,” IEEE J. Sel. Top. Signal Process, vol. 15, no. 6, pp. 1316–1331, 2021.
  82. Z. Wang, Y. Liu, X. Mu, and Z. Ding, “NOMA inspired interference cancellation for integrated sensing and communication,” in ICC 2022 - IEEE International Conference on Communications, 2022, pp. 3154–3159.
  83. H. Liu and E. Alsusa, “A novel ISaC approach for uplink NOMA system,” IEEE Commun. Lett., vol. 27, no. 9, pp. 2333–2337, 2023.
  84. Z. Wang, Y. Liu, X. Mu, Z. Ding, and O. A. Dobre, “NOMA empowered integrated sensing and communication,” IEEE Commun. Lett., vol. 26, no. 3, pp. 677–681, 2022.
  85. N. H. Chu, D. N. Nguyen, D. T. Hoang, Q.-V. Pham, K. T. Phan, W.-J. Hwang, and E. Dutkiewicz, “AI-enabled mm-Waveform configuration for autonomous vehicles with integrated communication and sensing,” IEEE Internet Things J., vol. 10, no. 19, pp. 16 727–16 743, 2023.
  86. S. M. O’Rourke, P. Setlur, M. Rangaswamy, and A. L. Swindlehurst, “Quadratic semidefinite programming for waveform-constrained joint filter-signal design in STAP,” IEEE Trans. Signal Process, vol. 68, pp. 1744–1759, 2020.
  87. P. Stoica, H. He, and J. Li, “Optimization of the receive filter and transmit sequence for active sensing,” IEEE Trans. Signal Process, vol. 60, no. 4, pp. 1730–1740, 2012.
  88. K. Zhong, J. Hu, C. Pan, M. Deng, and J. Fang, “Joint waveform and beamforming design for RIS-aided ISAC systems,” IEEE Signal Process Lett., vol. 30, pp. 165–169, 2023.
  89. H. Luo, R. Liu, M. Li, and Q. Liu, “RIS-aided integrated sensing and communication: Joint beamforming and reflection design,” IEEE Trans. Veh. Technol., vol. 72, no. 7, pp. 9626–9630, 2023.
  90. C. Masouros and G. Zheng, “Exploiting known interference as green signal power for downlink beamforming optimization,” IEEE Trans. Signal Process, vol. 63, no. 14, pp. 3628–3640, 2015.
  91. N. Su, Z. Wei, and C. Masouros, “Secure dual-functional radar-communication system via exploiting known interference in the presence of clutter,” in 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2021, pp. 451–455.
  92. B. Hong, W.-Q. Wang, and C.-C. Liu, “Interference utilization for spectrum sharing radar-communication systems,” IEEE Trans. Veh. Technol., vol. 70, no. 8, pp. 8304–8308, 2021.
  93. Z. Zhang, Q. Chang, F. Liu, and S. Yang, “Dual-functional radar-communication waveform design: Interference reduction versus exploitation,” IEEE Commun. Lett., vol. 26, no. 1, pp. 148–152, 2022.
  94. C. Masouros, T. Ratnarajah, M. Sellathurai, C. B. Papadias, and A. K. Shukla, “Known interference in the cellular downlink: A performance limiting factor or a source of green signal power?” IEEE Commun. Mag., vol. 51, no. 10, pp. 162–171, 2013.
  95. F. Liu, C. Masouros, A. Li, T. Ratnarajah, and J. Zhou, “MIMO radar and cellular coexistence: A power-efficient approach enabled by interference exploitation,” IEEE Trans. Signal Process, vol. 66, no. 14, pp. 3681–3695, 2018.
  96. T. Liu, Y. Guo, L. Lu, and B. Xia, “Waveform design for integrated sensing and communication systems based on interference exploitation,” IEEE Trans. Signal Process, vol. 7, no. 4, pp. 447–456, 2022.
  97. P. Gao, L. Lian, and J. Yu, “Cooperative ISAC with direct localization and rate-splitting multiple access communication: A pareto optimization framework,” IEEE J. Sel. Areas Commun., vol. 41, no. 5, pp. 1496–1515, 2023.
  98. J. A. Zhang, X. Huang, Y. J. Guo, J. Yuan, and R. W. Heath, Jr., “Multibeam for joint communication and radar sensing using steerable analog antenna arrays,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 671–685, JAN 2019.
  99. A. Hassanien, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Signaling strategies for dual-function radar communications: An overview,” IEEE Aerosp. Electron. Syst. Mag., vol. 31, no. 10, pp. 36–45, 2016.
  100. L. Zheng, M. Lops, Y. C. Eldar, and X. Wang, “Radar and communication coexistence: An overview: A review of recent methods,” IEEE Signal Process Mag., vol. 36, no. 5, pp. 85–99, 2019.
  101. A. Hassanien, M. G. Amin, E. Aboutanios, and B. Himed, “Dual-function radar communication systems: A solution to the spectrum congestion problem,” IEEE Signal Process Mag., vol. 36, no. 5, pp. 115–126, 2019.
  102. Y.-C. Wang, X. Wang, H. Liu, and Z.-Q. Luo, “On the design of constant modulus probing signals for MIMO radar,” IEEE Trans. Signal Process, vol. 60, no. 8, pp. 4432–4438, 2012.
  103. G. Cui, H. Li, and M. Rangaswamy, “MIMO radar waveform design with constant modulus and similarity constraints,” IEEE Trans. Signal Process., vol. 62, no. 2, pp. 343–353, JAN 2014.
  104. C. Masouros and E. Alsusa, “A novel transmitter-based selective-precoding technique for DS/CDMA systems,” IEEE Signal Process Lett., vol. 14, no. 9, pp. 637–640, 2007.
  105. X. Li, Z. Xie, Z. Chu, V. G. Menon, S. Mumtaz, and J. Zhang, “Exploiting benefits of IRS in wireless powered NOMA networks,” IEEE Trans. Green Commun. Networking, vol. 6, no. 1, pp. 175–186, 2022.
  106. C. D’Andrea, S. Buzzi, and M. Lops, “Communications and radar coexistence in the massive MIMO regime: Uplink analysis,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 19–33, 2020.
  107. M. Temiz, E. Alsusa, and M. W. Baidas, “A dual-function massive MIMO uplink OFDM communication and radar architecture,” IEEE Trans. Cognit. Commun. Networking, vol. 8, no. 2, pp. 750–762, 2022.
  108. C. Ouyang, Y. Liu, and H. Yang, “On the performance of uplink ISAC systems,” IEEE Commun. Lett., vol. 26, no. 8, pp. 1769–1773, 2022.
  109. C. Ouyang, Y. Liu, and H. Yang, “Revealing the impact of SIC in NOMA-ISAC,” IEEE Wireless Commun. Lett., vol. 12, no. 10, pp. 1707–1711, 2023.
  110. X. Chen, Z. Feng, J. Andrew Zhang, Z. Wei, X. Yuan, and P. Zhang, “Sensing-aided uplink channel estimation for joint communication and sensing,” IEEE Wireless Commun. Lett., vol. 12, no. 3, pp. 441–445, 2023.
  111. X. Wang, Z. Fei, J. A. Zhang, and J. Huang, “Sensing-assisted secure uplink communications with full-duplex base station,” IEEE Commun. Lett., vol. 26, no. 2, pp. 249–253, 2022.
  112. F. Liu, W. Yuan, C. Masouros, and J. Yuan, “Radar-assisted predictive beamforming for vehicular links: Communication served by sensing,” IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7704–7719, 2020.
  113. J. Guo, C.-K. Wen, and S. Jin, “CAnet: Uplink-aided downlink channel acquisition in FDD massive MIMO using deep learning,” IEEE Trans. Commun., vol. 70, no. 1, pp. 199–214, 2022.
  114. A. Subhash, A. Kammoun, A. Elzanaty, S. Kalyani, Y. H. Al-Badarneh, and M.-S. Alouini, “Optimal phase shift design for fair allocation in RIS-aided uplink network using statistical CSI,” IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2461–2475, 2023.
  115. Y. Liu, S. Zhang, F. Gao, J. Ma, and X. Wang, “Uplink-aided high mobility downlink channel estimation over massive MIMO-OTFS system,” IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 1994–2009, 2020.
  116. A. Lazaro, D. Girbau, and R. Villarino, “Techniques for clutter suppression in the presence of body movements during the detection of respiratory activity through UWB radars,” Sensors, vol. 14, no. 2, pp. 2595–2618, 2014.
  117. S. Torres and D. Zrnic, “Ground clutter canceling with a regression filter,” J. Atmos. Oceanic Technol., vol. 16, no. 10, pp. 1364–1372, OCT 1999.
  118. S. M. Torres and D. A. Warde, “Staggered-PRT sequences for Doppler weather radars. Part I: Spectral analysis using the autocorrelation spectral density,” J. Atmos. Oceanic Technol., vol. 34, no. 1, pp. 51–63, JAN 2017.
  119. D. A. Warde and S. M. Torres, “Staggered-PRT sequences for Doppler weather radars. Part II: Ground clutter mitigation on the NEXRAD network using the CLEAN-AP filter,” J. Atmos. Oceanic Technol., vol. 34, no. 3, pp. 703–716, 2017.
  120. H. Luo, Y. Wang, J. Zhao, H. Wu, S. Ma, and F. Gao, “Integrated sensing and communications in clutter environment,” arXiv preprint arXiv:2311.01674, 2023.
  121. S. Han, C. Fan, and X. Huang, “A novel STAP based on spectrum-aided reduced-dimension clutter sparse recovery,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 2, pp. 213–217, 2017.
  122. G. Sun, Z. He, J. Tong, and X. Zhang, “Knowledge-aided covariance matrix estimation via kronecker product expansions for airborne STAP,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 4, pp. 527–531, 2018.
  123. J. Hu, J. Li, H. Li, K. Li, and J. Liang, “A novel covariance matrix estimation via cyclic characteristic for STAP,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 11, pp. 1871–1875, 2020.
  124. G. Sun, M. Li, J. Tong, and Y. Ji, “Structured clutter covariance matrix estimation for airborne MIMO radar with limited training data,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022.
  125. S. Han, C. Fan, and X. Huang, “A novel STAP based on spectrum-aided reduced-dimension clutter sparse recovery,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 2, pp. 213–217, 2016.
  126. W. Zhang, R. An, N. He, Z. He, and H. Li, “Reduced dimension STAP based on sparse recovery in heterogeneous clutter environments,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 1, pp. 785–795, 2019.
  127. B. Li and A. P. Petropulu, “Joint transmit designs for coexistence of MIMO wireless communications and sparse sensing radars in clutter,” IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 6, pp. 2846–2864, 2017.
  128. R. Liu, M. Li, Q. Liu, and A. L. Swindlehurst, “Joint waveform and filter designs for STAP-SLP-based MIMO-DFRC systems,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1918–1931, 2022.
  129. B. Tang and J. Tang, “Joint design of transmit waveforms and receive filters for MIMO radar space-time adaptive processing,” IEEE Trans. Signal Process, vol. 64, no. 18, pp. 4707–4722, 2016.
  130. A. R. Chiriyath and D. W. Bliss, “Effect of clutter on joint radar-communications system performance inner bounds,” in 2015 49th Asilomar Conference on Signals, Systems and Computers, 2015, pp. 1379–1383.
  131. Y. Wang, W. Li, Q. Sun, and G. Huang, “Robust joint design of transmit waveform and receive filter for MIMO radar space-time adaptive processing with signal-dependent interferences,” IET Radar Sonar Navig., vol. 11, no. 8, pp. 1321–1332, 2017.
  132. A. Aubry, A. De Maio, and M. Rosamilia, “Reconfigurable intelligent surfaces for N-LOS radar surveillance,” IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 10 735–10 749, 2021.
  133. Z. Zhang, L. Dai, X. Chen, C. Liu, F. Yang, R. Schober, and H. V. Poor, “Active RIS vs. passive RIS: Which will prevail in 6G?” IEEE Trans. Commun., vol. 71, no. 3, pp. 1707–1725, 2023.
  134. F. Wang, H. Li, and A. L. Swindlehurst, “Clutter suppression for target detection using hybrid reconfigurable intelligent surfaces,” in 2023 IEEE Radar Conference (RadarConf23), 2023, pp. 1–5.
  135. C. Liao, F. Wang, and V. K. N. Lau, “Optimized design for IRS-assisted integrated sensing and communication systems in clutter environments,” IEEE Trans. Commun., vol. 71, no. 8, pp. 4721–4734, 2023.
  136. X. Zhang, H. Zhang, H. Zhang, and B. Di, “Holographic radar: Target detection enabled by reconfigurable holographic surfaces,” IEEE Commun. Lett., vol. 27, no. 1, pp. 332–336, 2023.
  137. R. Deng, B. Di, H. Zhang, Y. Tan, and L. Song, “Reconfigurable holographic surface-enabled multi-user wireless communications: Amplitude-controlled holographic beamforming,” IEEE Trans. Wireless Commun., vol. 21, no. 8, pp. 6003–6017, 2022.
  138. T. Wei, L. Wu, K. V. Mishra, and M. Shankar, “RIS-aided wideband holographic DFRC,” arXiv preprint arXiv:2305.04602, 2023.
  139. P. Kollias, E. P. Luke, K. Tuftedal, M. Dubois, and E. J. Knapp, “Agile weather observations using a dual-polarization X-band phased array radar,” in 2022 IEEE Radar Conference (RadarConf22), 2022, pp. 1–6.
  140. C. Gao, X. Wang, R. Wang, Z. Zhao, Y. Zhai, X. Chen, and B. M. Chen, “A UAV-based explore-then-exploit system for autonomous indoor facility inspection and scene reconstruction,” Autom. Constr., vol. 148, p. 104753, 2023.
  141. J. R. Cooper and B. D. Allen, “Autonomous vehicle allocation based on clutter assessment,” in AIAA Scitech 2021 Forum, 2021, p. 1887.
  142. A. Fung, L. Y. Wang, K. Zhang, G. Nejat, and B. Benhabib, “Using deep learning to find victims in unknown cluttered urban search and rescue environments,” Curr. Rob. Rep., vol. 1, pp. 105–115, 2020.
  143. H. Heuermann, T. Harzheim, and M. Mühmel, “A maritime harmonic radar search and rescue system using passive and active tags,” in 2020 17th European Radar Conference (EuRAD), 2021, pp. 73–76.
  144. Y. Ma, H. Hong, and X. Zhu, “Multiple moving-target indication for urban sensing using change detection-based compressive sensing,” IEEE Geosci. Remote Sens. Lett., vol. 18, no. 3, pp. 416–420, 2021.
  145. S. Y. Nusenu, “OFDM chirp radar target detection and adaptive design in clutter environment,” in 2018 IEEE 7th International Conference on Adaptive Science & Technology (ICAST), 2018, pp. 1–7.
  146. N. Cao, Y. Chen, X. Gu, and W. Feng, “Joint bi-static radar and communications designs for intelligent transportation,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 13 060–13 071, 2020.
  147. W. Jiang, Z. Wei, F. Liu, Z. Feng, and P. Zhang, “Collaborative precoding design for adjacent integrated sensing and communication base stations,” IEEE Internet Things J., pp. 1–1, 2023.
  148. L. Chen, X. Qin, Y. Chen, and N. Zhao, “Joint waveform and clustering design for coordinated multi-point DFRC systems,” IEEE Trans. Commun., vol. 71, no. 3, pp. 1323–1335, 2023.
  149. F. Sun, Y. Zhao, and H. Sun, “Centralized cell cluster interference mitigation for dynamic TDD DL/UL configuration with traffic adaptation for HTN networks,” in 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), 2015, pp. 1–5.
  150. F. Sun and Y. Zhao, “Cell cluster-based dynamic TDD DL/UL reconfiguration in TD-LTE systems,” in 2016 IEEE Wireless Communications and Networking Conference, 2016, pp. 1–5.
  151. D. Xu, C. Liu, S. Song, and D. W. K. Ng, “Integrated sensing and communication in coordinated cellular networks,” 2023.
  152. Y. Xu, D. Xu, L. Xie, and S. Song, “Joint BS selection, user association, and beamforming design for network integrated sensing and communication,” arXiv preprint arXiv:2305.05265, 2023.
  153. Y. Huang, Y. Fang, X. Li, and J. Xu, “Coordinated power control for network integrated sensing and communication,” IEEE Trans. Veh. Technol., vol. 71, no. 12, pp. 13 361–13 365, 2022.
  154. G. Li, S. Wang, K. Ye, M. Wen, D. W. K. Ng, and M. Di Renzo, “Multi-point integrated sensing and communication: Fusion model and functionality selection,” IEEE Wireless Commun. Lett., vol. 11, no. 12, pp. 2660–2664, 2022.
  155. S. Liu, M. Li, and Q. Liu, “Joint BS mode selection and beamforming design for cooperative cell-free ISAC networks,” 05 2023.
  156. Z. Ni, J. A. Zhang, X. Huang, K. Yang, and J. Yuan, “Uplink sensing in perceptive mobile networks with asynchronous transceivers,” IEEE Trans. Signal Process, vol. 69, pp. 1287–1300, 2021.
  157. A. Zhang, M. L. Rahman, X. Huang, Y. J. Guo, S. Chen, and R. W. Heath, “Perceptive mobile networks: Cellular networks with radio vision via joint communication and radar sensing,” IEEE Veh. Technol. Mag., vol. 16, no. 2, pp. 20–30, 2021.
  158. L. Xie, P. Wang, S. Song, and K. B. Letaief, “Perceptive mobile network with distributed target monitoring terminals: Leaking communication energy for sensing,” IEEE Trans. Wireless Commun., vol. 21, no. 12, pp. 10 193–10 207, 2022.
  159. Q. Huang, H. Chen, and Q. Zhang, “Joint design of sensing and communication systems for smart homes,” IEEE Network, vol. 34, no. 6, pp. 191–197, 2020.
  160. J. Li, L. Peng, Y. Ye, R. Xu, W. Zhao, and C. Tian, “A neighbor discovery algorithm in network of radar and communication integrated system,” in 2014 IEEE 17th International Conference on Computational Science and Engineering, 2014, pp. 1142–1149.
  161. Z. Wei, C. Li, Y. Cui, X. Chen, Z. Meng, and Z. Feng, “Integrated sensing and communication neighbor discovery for MANET with Gossip mechanism,” IEEE Sens. J., vol. 23, no. 23, pp. 29 667–29 678, 2023.
  162. D. G. Narayan, R. Nivedita, S. Kiran, and M. Uma, “Congestion adaptive multipath routing protocol for multi-radio wireless mesh networks,” in 2012 International Conference on Radar, Communication and Computing (ICRCC), 2012, pp. 72–76.
  163. X. Zhao, X. Zhang, S. Li, F. Jiang, and J. Peng, “A cooperative interference eliminated mechanism in MIMO systems,” in 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), 2018, pp. 569–572.
  164. Y. Li and M. Jiang, “Joint transmit beamforming and receive filters design for coordinated two-cell interfering dual-functional radar-communication networks,” IEEE Trans. Veh. Technol., vol. 71, no. 11, pp. 12 362–12 367, 2022.
  165. A. Kilzi, J. Farah, C. Abdel Nour, and C. Douillard, “Mutual successive interference cancellation strategies in NOMA for enhancing the spectral efficiency of CoMP systems,” IEEE Trans. Commun., vol. 68, no. 2, pp. 1213–1226, 2020.
  166. X. Hai-lin, W. Peng, O. Shan, and L. Min-zheng, “Power allocation scheme based on system capacity maximization for multi-base station cooperative communication,” Journal of Beijing University of Posts and Telecommunications, vol. 36, no. 6, pp. 93–97, 2013.
  167. F. Dong, F. Liu, Y. Cui, W. Wang, K. Han, and Z. Wang, “Sensing as a service in 6G perceptive networks: A unified framework for ISAC resource allocation,” IEEE Trans. Wireless Commun., vol. 22, no. 5, pp. 3522–3536, 2023.
  168. Z. Wei, H. Liu, X. Yang, W. Jiang, H. Wu, X. Li, and Z. Feng, “Carrier aggregation enabled integrated sensing and communication signal design and processing,” IEEE Trans. Veh. Technol., pp. 1–17, 2023.
  169. X. Zhang, Y. Xu, H. Zhang, G. Wang, X. Li, and C. Yuen, “Full-duplex-enhanced wireless-powered backscatter communication networks: Radio resource allocation and beamforming joint optimization,” IEEE Trans. Green Commun. Networking, pp. 1–1, 2024.
  170. I. Roldan, L. Lamberti, F. Fioranelli, and A. Yarovoy, “Low complexity single-snapshot DoA estimation via bayesian compressive sensing,” in 2023 IEEE Radar Conference (RadarConf23), 2023, pp. 1–6.
  171. D. Wen, P. Liu, G. Zhu, Y. Shi, J. Xu, Y. C. Eldar, and S. Cui, “Task-oriented sensing, computation, and communication integration for multi-device edge AI,” IEEE Trans. Wireless Commun., pp. 1–1, 2023.
  172. D. Wen, X. Li, Y. Zhou, Y. Shi, S. Wu, and C. Jiang, “Integrated sensing-communication-computation for edge artificial intelligence,” arXiv preprint arXiv:2306.01162, 2023.
  173. Z. Wei, R. Xu, Z. Feng, H. Wu, N. Zhang, W. Jiang, and X. Yang, “Symbol-level integrated sensing and communication enabled multiple base stations cooperative sensing,” Abbreviation Title IEEE Trans. Veh. Technol., vol. 73, no. 1, pp. 724–738, 2024.
  174. G. Serafino, S. Maresca, L. Di Mauro, A. Tardo, A. Cuillo, F. Scotti, P. Ghelfi, P. Pagano, and A. Bogoni, “A photonics-assisted multi-band MIMO radar network for the port of the future,” IEEE J. Sel. Top. Quantum Electron., vol. 27, no. 6, pp. 1–13, 2021.
  175. K. Ji, Q. Zhang, Z. Wei, Z. Feng, and P. Zhang, “Networking based ISAC hardware testbed and performance evaluation,” IEEE Commun. Mag., vol. 61, no. 5, pp. 76–82, 2023.
  176. Q. Zhang, K. Ji, Z. Wei, Z. Feng, and P. Zhang, “Joint communication and sensing system performance evaluation and testbed: A communication-centric approach,” IEEE Network, pp. 1–1, 2024.
  177. G. Wu, Y. Fang, J. Xu, Z. Feng, and S. Cui, “Energy-efficient MIMO integrated sensing and communications with on-off non-transmission power,” IEEE Internet Things J., pp. 1–1, 2023.
  178. Q. Zhu, M. Li, R. Liu, and Q. Liu, “Joint transceiver beamforming and reflecting design for active RIS-aided ISAC systems,” IEEE Trans. Veh. Technol., 2023.
  179. G. Sun, Y. Zhang, W. Hao, Z. Zhu, X. Li, and Z. Chu, “Joint beamforming optimization for STAR-RIS aided NOMA ISAC systems,” IEEE Wireless Commun. Lett., 2024.
  180. Y. Cui, Z. Feng, Q. Zhang, Z. Wei, C. Xu, and P. Zhang, “Toward trusted and swift UAV communication: ISAC-enabled dual identity mapping,” IEEE Wireless Commun., vol. 30, no. 1, pp. 58–66, 2023.
  181. M. Z. Hassan, G. Kaddoum, and O. Akhrif, “Interference management in cellular-connected internet of drones networks with drone-pairing and uplink rate-splitting multiple access,” IEEE Internet Things J., vol. 9, no. 17, pp. 16 060–16 079, 2022.
  182. D. A. Chekired, M. A. Togou, L. Khoukhi, and A. Ksentini, “5G-slicing-enabled scalable SDN core network: Toward an ultra-low latency of autonomous driving service,” IEEE J. Sel. Areas Commun., vol. 37, no. 8, pp. 1769–1782, 2019.
  183. D. Garmatyuk, J. Schuerger, and K. Kauffman, “Multifunctional software-defined radar sensor and data communication system,” IEEE Sens. J., vol. 11, no. 1, pp. 99–106, 2011.
  184. H. M. Furqan, M. S. J. Solaija, H. Türkmen, and H. Arslan, “Wireless communication, sensing, and REM: A security perspective,” IEEE Open J. Commun. Soc., vol. 2, pp. 287–321, 2021.
  185. W. Sun, S. Sun, X. Su, and R. Liu, “Security-ensured integrated sensing and communication (ISAC) systems enabled by phase-coupled intelligent omni-surfaces (IOS),” IEEE Trans. Wireless Commun., 2023.
  186. X. Li, Q. Wang, M. Zeng, Y. Liu, S. Dang, T. A. Tsiftsis, and O. A. Dobre, “Physical-layer authentication for ambient backscatter-aided NOMA symbiotic systems,” IEEE Trans. Commun., vol. 71, no. 4, pp. 2288–2303, 2023.
  187. G. Huang, S. Chen, Y. Ding, X. Li, A. Nallanathan, and S. Mumtaz, “Security-enhanced directional modulation symbol synthesis using high efficiency time-modulated arrays,” IEEE Trans. Veh. Technol., vol. 73, no. 1, pp. 1418–1423, 2024.
Citations (9)

Summary

We haven't generated a summary for this paper yet.