Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Salience DETR: Enhancing Detection Transformer with Hierarchical Salience Filtering Refinement (2403.16131v1)

Published 24 Mar 2024 in cs.CV

Abstract: DETR-like methods have significantly increased detection performance in an end-to-end manner. The mainstream two-stage frameworks of them perform dense self-attention and select a fraction of queries for sparse cross-attention, which is proven effective for improving performance but also introduces a heavy computational burden and high dependence on stable query selection. This paper demonstrates that suboptimal two-stage selection strategies result in scale bias and redundancy due to the mismatch between selected queries and objects in two-stage initialization. To address these issues, we propose hierarchical salience filtering refinement, which performs transformer encoding only on filtered discriminative queries, for a better trade-off between computational efficiency and precision. The filtering process overcomes scale bias through a novel scale-independent salience supervision. To compensate for the semantic misalignment among queries, we introduce elaborate query refinement modules for stable two-stage initialization. Based on above improvements, the proposed Salience DETR achieves significant improvements of +4.0% AP, +0.2% AP, +4.4% AP on three challenging task-specific detection datasets, as well as 49.2% AP on COCO 2017 with less FLOPs. The code is available at https://github.com/xiuqhou/Salience-DETR.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xiuquan Hou (2 papers)
  2. Meiqin Liu (31 papers)
  3. Senlin Zhang (17 papers)
  4. Ping Wei (26 papers)
  5. Badong Chen (83 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.