Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homogeneous multigrid for hybrid discretizations: application to HHO methods (2403.15858v2)

Published 23 Mar 2024 in math.NA and cs.NA

Abstract: We prove the uniform convergence of the geometric multigrid V-cycle for hybrid high-order (HHO) and other discontinuous skeletal methods. Our results generalize previously established results for HDG methods, and our multigrid method uses standard smoothers and local solvers that are bounded, convergent, and consistent. We use a weak version of elliptic regularity in our proofs. Numerical experiments confirm our theoretical results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. Two families of mixed finite elements for second order elliptic problems. Numerische Mathematik, 47(2):217–235, 1985. 10.1007/BF01389710.
  2. L. Botti and D. A. Di Pietro. p𝑝pitalic_p-multilevel preconditioners for HHO discretizations of the Stokes equations with static condensation. Communications on Applied Mathematics and Computation, 2021. 10.1007/s42967-021-00142-5.
  3. The Mimetic Finite Difference Method for Elliptic Problems. Springer International Publishing, Cham, 2014. 10.1007/978-3-319-02663-3.
  4. J. Bonelle and A. Ern. Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: M2AN, 48(2):553–581, 2014. 10.1051/m2an/2013104.
  5. J. Bey. Tetrahedral grid refinement. Computing, 55(4):355–378, 1995. 10.1007/BF02238487.
  6. The analysis of smoothers for multigrid algorithms. Mathematics of Computation, 58(198):467–488, 1992. 10.1090/S0025-5718-1992-1122058-0.
  7. The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms. Mathematics of Computation, 56(193):1–34, 1991.
  8. A multigrid tutorial. Society for Industrial and Applied Mathematics, 2000.
  9. A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Mathematics of Computation, 77(264):1887–1916, 2008.
  10. Multigrid for an HDG method. IMA Journal of Numerical Analysis, 34(4):1386–1425, 2014.
  11. Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: Mathematical Modelling and Numerical Analysis, 50(3):635–650, May 2016. 10.1051/m2an/2015051.
  12. Hybrid high-order methods—a primer with applications to solid mechanics. SpringerBriefs in Mathematics. Springer, Cham, 2021. 10.1007/978-3-030-81477-9.
  13. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM Journal on Numerical Analysis, 47(2):1319–1365, 2009. 10.1137/070706616.
  14. J. Droniou and R. Eymard. A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numerische Mathematik, 105(1):35–71, 2006. 10.1007/s00211-006-0034-1.
  15. A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Mathematical Models and Methods in Applied Sciences, 20(02):265–295, 2010. 10.1142/S0218202510004222.
  16. L. Demkowicz and J. Gopalakrishnan. Analysis of the DPG method for the Poisson equation. SIAM Journal on Numerical Analysis, 49(5/6):1788–1809, 2011.
  17. A generalized BPX multigrid framework covering nonnested V-cycle methods. Mathematics of Computation, 76(257):137–152, 2007.
  18. D.A. Di Pietro and J. Droniou. The Hybrid High-Order method for polytopal meshes. Number 19 in Modeling, Simulation and Application. Springer International Publishing, 2020. 10.1007/978-3-030-37203-3.
  19. D.A. Di Pietro and A. Ern. A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Meth. Appl. Mech. Engrg., 283:1–21, 2015. 10.1016/j.cma.2014.09.009.
  20. An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Meth. Appl. Math., 14(4):461–472, 2014. 10.1515/cmam-2014-0018.
  21. An hℎhitalic_h-multigrid method for hybrid high-order discretizations. SIAM Journal on Scientific Computing, 43(5):S839–S861, 2021. 10.1137/20M1342471.
  22. Towards robust, fast solutions of elliptic equations on complex domains through hybrid high‐order discretizations and non‐nested multigrid methods. International Journal for Numerical Methods in Engineering, 122(22):6576–6595, 2021. 10.1002/nme.6803.
  23. Algebraic multigrid preconditioner for statically condensed systems arising from lowest-order hybrid discretizations. SIAM Journal on Scientific Computing, 45(4):S329–S350, 2023. 10.1137/21M1429849.
  24. High-order multigrid strategies for HHO discretizations of elliptic equations. Numerical Linear Algebra with Applications, 30(1):e2456, 2023. 10.1002/nla.2456.
  25. A. Ern and J.L. Guermond. Finite elements I—Approximation and interpolation, volume 72 of Texts in Applied Mathematics. Springer, Cham, [2021] ©2021. 10.1007/978-3-030-56341-7.
  26. Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA Journal of Numerical Analysis, 30(4):1009–1043, 2010. 10.1093/imanum/drn084.
  27. V. Girault and P.A. Raviart. Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin Heidelberg, 1986. 10.1007/978-3-642-61623-5.
  28. J. Gopalakrishnan and S. Tan. A convergent multigrid cycle for the hybridized mixed method. Numerical Linear Algebra with Applications, 16(9):689–714, 2009. 10.1002/nla.636.
  29. M. Kronbichler and W. Wall. A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers. SIAM Journal on Scientific Computing, 40(5):A3423–A3448, 2018. 10.1137/16M110455X.
  30. Homogeneous multigrid for HDG. IMA Journal of Numerical Analysis, 42:3135–3153, 2021. 10.1093/imanum/drab055.
  31. Analysis of injection operators in geometric multigrid solvers for HDG methods. SIAM Journal on Numerical Analysis, 60(4):2293–2317, 2022. 10.1137/21M1400110.
  32. Homogeneous multigrid for embedded discontinuous Galerkin methods. BIT Numerical Mathematics, 62:1029–1048, 2022. 10.1007/s10543-021-00902-y.
  33. Homogeneous multigrid for HDG applied to the Stokes equation. IMA Journal of Numerical Analysis, 2023. 10.1093/imanum/drad079.
  34. A multilevel approach for trace system in HDG discretizations. Journal of Computational Physics, 407:109240, 2020. 10.1016/j.jcp.2020.109240.
  35. P. Monk. Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York, 2003.
  36. S. Petrides and L. Demkowicz. An adaptive multigrid solver for DPG methods with applications in linear acoustics and electromagnetics. Computers & Mathematics with Applications, 87:12–26, 2021. 10.1016/j.camwa.2021.01.017.
  37. N. V. Roberts and J. Chan. A geometric multigrid preconditioning strategy for DPG system matrices. Computers & Mathematics with Applications, 74(8):2018–2043, 2017.
  38. A mixed finite element method for 2-nd order elliptic problems. In Mathematical Aspects of Finite Element Methods, pages 292–315, Berlin, Heidelberg, 1977. Springer Berlin Heidelberg.
  39. J. Schütz and V. Aizinger. A hierarchical scale separation approach for the hybridized discontinuous Galerkin method. Journal of Computational and Applied Mathematics, 317:500–509, 2017. 10.1016/j.cam.2016.12.018.
  40. L. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 54(190):483–493, 1990.
  41. S. Tan. Iterative solvers for hybridized finite element methods. PhD thesis, University of Florida, 2009.
  42. Multigrid. Academic Press, 2001.
  43. Unified geometric multigrid algorithm for hybridized high-order finite element methods. SIAM Journal on Scientific Computing, 41(5):S172–S195, 2019. 10.1137/18M1193505.
  44. J. Wang and X. Ye. A weak Galerkin finite element method for second-order elliptic problems. Journal of Computational and Applied Mathematics, 241:103–115, 2013. 10.1016/j.cam.2012.10.003.

Summary

We haven't generated a summary for this paper yet.