TJCCT: A Two-timescale Approach for UAV-assisted Mobile Edge Computing (2403.15828v1)
Abstract: Unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) is emerging as a promising paradigm to provide aerial-terrestrial computing services in close proximity to mobile devices (MDs). However, meeting the demands of computation-intensive and delay-sensitive tasks for MDs poses several challenges, including the demand-supply contradiction between MDs and MEC servers, the demand-supply heterogeneity between MDs and MEC servers, the trajectory control requirements on energy efficiency and timeliness, and the different time-scale dynamics of the network. To address these issues, we first present a hierarchical architecture by incorporating terrestrial-aerial computing capabilities and leveraging UAV flexibility. Furthermore, we formulate a joint computing resource allocation, computation offloading, and trajectory control problem to maximize the system utility. Since the problem is a non-convex and NP-hard mixed integer nonlinear programming (MINLP), we propose a two-timescale joint computing resource allocation, computation offloading, and trajectory control (TJCCT) approach for solving the problem. In the short timescale, we propose a price-incentive model for on-demand computing resource allocation and a matching mechanism-based method for computation offloading. In the long timescale, we propose a convex optimization-based method for UAV trajectory control. Besides, we theoretically prove the stability, optimality, and polynomial complexity of TJCCT. Extended simulation results demonstrate that the proposed TJCCT outperforms the comparative algorithms in terms of the system utility, average processing rate, average completion delay, and average completion ratio.
- Y. Qu, H. Dai, L. Wang, W. Wang, F. Wu, H. Tan, S. Tang, and C. Dong, “Cotask: Correlation-aware task offloading in edge computing,” World Wide Web, vol. 25, no. 5, pp. 2185–2213, 2022.
- Y. Li, T. Zeng, X. Zhang, J. Duan, and C. Wu, “Tapfinger: Task placement and fine-grained resource allocation for edge machine learning,” in Proc. IEEE INFOCOM, 2023.
- Y. Wang, P. Lang, D. Tian, J. Zhou, X. Duan, Y. Cao, and D. Zhao, “A game-based computation offloading method in vehicular multiaccess edge computing networks,” IEEE Internet Things J., vol. 7, no. 6, pp. 4987–4996, 2020.
- S. Xia, Z. Yao, Y. Li, and S. Mao, “Online distributed offloading and computing resource management with energy harvesting for heterogeneous mec-enabled iot,” IEEE Trans. Wirel. Commun., vol. 20, no. 10, pp. 6743–6757, 2021.
- H. Jiang, X. Dai, Z. Xiao, and A. K. Iyengar, “Joint task offloading and resource allocation for energy-constrained mobile edge computing,” IEEE Trans. Mob. Comput., vol. 22, no. 7, pp. 4000–4015, 2023.
- Z. Ding, D. Xu, R. Schober, and H. V. Poor, “Hybrid NOMA offloading in multi-user MEC networks,” IEEE Trans. Wirel. Commun., vol. 21, no. 7, pp. 5377–5391, 2022.
- M. Tao, X. Li, K. Ota, and M. Dong, “Single-cell multiuser computation offloading in dynamic pricing-aided mobile edge computing,” IEEE Trans. Comput. Soc. Syst., 2023.
- Y. He, M. Yang, Z. He, and M. Guizani, “Computation offloading and resource allocation based on dt-mec-assisted federated learning framework,” IEEE Trans. on Cogn. Commun. Netw., 2023.
- X. Zhou, S. Ge, P. Liu, and T. Qiu, “DAG-based dependent tasks offloading in MEC-enabled IoT with soft cooperation,” IEEE Trans. on Mob. Compt., 2023.
- Y. Ding, Y. Feng, W. Lu, S. Zheng, N. Zhao, L. Meng, A. Nallanathan, and X. Yang, “Online edge learning offloading and resource management for uav-assisted MEC secure communications,” IEEE J. Sel. Top. Signal Process., vol. 17, no. 1, pp. 54–65, 2023.
- N. Lin, H. Tang, L. Zhao, S. Wan, A. Hawbani, and M. Guizani, “A pddqnlp algorithm for energy efficient computation offloading in uav-assisted mec,” IEEE Trans. Wireless Commun., 2023.
- Z. Yang, S. Bi, and Y.-J. A. Zhang, “Dynamic offloading and trajectory control for uav-enabled mobile edge computing system with energy harvesting devices,” IEEE Transactions on Wireless Communications, vol. 21, no. 12, pp. 10 515–10 528, 2022.
- Y. Wang, W. Chen, T. H. Luan, Z. Su, Q. Xu, R. Li, and N. Chen, “Task offloading for post-disaster rescue in unmanned aerial vehicles networks,” IEEE/ACM Trans. Netw., vol. 30, no. 4, pp. 1525–1539, 2022.
- B. Li, R. Yang, L. Liu, J. Wang, N. Zhang, and M. Dong, “Robust computation offloading and trajectory optimization for multi-uav-assisted mec: A multi-agent drl approach,” IEEE Internet Things J., 2023.
- A. Coletta, F. Giorgi, G. Maselli, M. Prata, D. Silvestri, J. D. Ashdown, and F. Restuccia, “A22{}^{\mbox{2}}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT-UAV: Application-aware content and network optimization of edge-assisted UAV systems,” Proc. IEEE INFOCOM, 2023.
- Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the sky: A tutorial on UAV communications for 5g and beyond,” Proc. IEEE, vol. 107, no. 12, pp. 2327–2375, 2019.
- Q. Wu, J. Xu, Y. Zeng, D. W. K. Ng, N. Al-Dhahir, R. Schober, and A. L. Swindlehurst, “A comprehensive overview on 5G-and-beyond networks with UAVs: From communications to sensing and intelligence,” IEEE J. Sel. Areas Commun., vol. 39, no. 10, pp. 2912–2945, 2021.
- Y. K. Tun, T. N. Dang, K. Kim, M. Alsenwi, W. Saad, and C. S. Hong, “Collaboration in the sky: A distributed framework for task offloading and resource allocation in multi-access edge computing,” IEEE Internet Things J., vol. 9, no. 23, pp. 24 221–24 235, 2022.
- H. Guo, Y. Wang, J. Liu, and C. Liu, “Multi-UAV cooperative task offloading and resource allocation in 5G advanced and beyond,” IEEE Trans. Wirel. Commun., pp. 1–1, 2023.
- M. Diamanti, C. Pelekis, E. E. Tsiropoulou, and S. Papavassiliou, “Delay minimization for rate-splitting multiple access-based multi-server mec offloading,” IEEE/ACM Trans. Netw., 2023.
- N. N. Ei, M. Alsenwi, Y. K. Tun, Z. Han, and C. S. Hong, “Energy-efficient resource allocation in multi-uav-assisted two-stage edge computing for beyond 5g networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 16 421–16 432, 2022.
- Y. Nie, J. Zhao, F. Gao, and F. R. Yu, “Semi-distributed resource management in uav-aided mec systems: A multi-agent federated reinforcement learning approach,” IEEE Trans. Veh. Technol., vol. 70, no. 12, pp. 13 162–13 173, 2021.
- Z. Han, T. Zhou, T. Xu, and H. Hu, “Joint user association and deployment optimization for delay-minimized uav-aided mec networks,” IEEE Wireless Communications Letters, vol. 12, no. 10, pp. 1791–1795, 2023.
- B. Liu, Y. Wan, F. Zhou, Q. Wu, and R. Q. Hu, “Resource allocation and trajectory design for miso uav-assisted mec networks,” IEEE Trans. on Veh. Tech., vol. 71, no. 5, pp. 4933–4948, 2022.
- D. Wang, J. Tian, H. Zhang, and D. Wu, “Task offloading and trajectory scheduling for uav-enabled MEC networks: An optimal transport theory perspective,” IEEE Wirel. Commun. Lett., vol. 11, no. 1, pp. 150–154, 2022.
- X. Chen, Y. Bi, G. Han, D. Zhang, M. Liu, H. Shi, H. Zhao, and F. Li, “Distributed computation offloading and trajectory optimization in multi-uav-enabled edge computing,” IEEE Internet Things J., vol. 9, no. 20, pp. 20 096–20 110, 2022.
- P. Chen, X. Luo, D. Guo, Y. Sun, J. Xie, Y. Zhao, and R. Zhou, “Secure task offloading for mec-aided-uav system,” IEEE Trans. Intell. Veh., vol. 8, no. 5, pp. 3444–3457, 2023.
- N. M. Laboni, S. J. Safa, S. Sharmin, M. A. Razzaque, M. M. Rahman, and M. M. Hassan, “A hyper heuristic algorithm for efficient resource allocation in 5g mobile edge clouds,” IEEE Transactions on Mobile Computing, vol. 23, no. 1, pp. 29–41, 2024.
- S. Goudarzi, S. A. Soleymani, W. Wang, and P. Xiao, “Uav-enabled mobile edge computing for resource allocation using cooperative evolutionary computation,” IEEE Trans. Aerosp. Electron. Syst., pp. 1–14, 2023.
- J. Tian, D. Wang, H. Zhang, and D. Wu, “Service satisfaction-oriented task offloading and uav scheduling in uav-enabled mec networks,” IEEE Trans. Wirel. Commun., 2023.
- H. Zhou, Z. Wang, G. Min, and H. Zhang, “Uav-aided computation offloading in mobile-edge computing networks: A stackelberg game approach,” IEEE Internet Things J., vol. 10, no. 8, pp. 6622–6633, 2023.
- Z. Ning, Y. Yang, X. Wang, L. Guo, X. Gao, S. Guo, and G. Wang, “Dynamic computation offloading and server deployment for uav-enabled multi-access edge computing,” IEEE Trans. Mob. Comput., vol. 22, no. 5, pp. 2628–2644, 2023.
- A. M. Seid, G. O. Boateng, S. Anokye, T. Kwantwi, G. Sun, and G. Liu, “Collaborative computation offloading and resource allocation in multi-uav-assisted iot networks: A deep reinforcement learning approach,” IEEE Internet Things J., vol. 8, no. 15, pp. 12 203–12 218, 2021.
- F. Song, H. Xing, X. Wang, S. Luo, P. Dai, Z. Xiao, and B. Zhao, “Evolutionary multi-objective reinforcement learning based trajectory control and task offloading in uav-assisted mobile edge computing,” IEEE Trans. on Mob. Comput., vol. 22, no. 12, pp. 7387–7405, 2023.
- J. Ji, K. Zhu, and L. Cai, “Trajectory and communication design for cache-enabled UAVs in cellular networks: A deep reinforcement learning approach,” IEEE Trans. Mob. Comput., 2022.
- L. Li, D. Shi, R. Hou, X. Li, J. Wang, H. Li, and M. Pan, “Data-driven optimization for cooperative edge service provisioning with demand uncertainty,” vol. 8, no. 6, pp. 4317–4328.
- H. Liao, Z. Zhou, W. Kong, Y. Chen, X. Wang, Z. Wang, and S. A. Otaibi, “Learning-based intent-aware task offloading for air-ground integrated vehicular edge computing,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 5127–5139, 2021.
- S. Batabyal and P. Bhaumik, “Mobility models, traces and impact of mobility on opportunistic routing algorithms: A survey,” IEEE Commun. Surv. Tutorials, vol. 17, no. 3, pp. 1679–1707, 2015.
- J. Ji, K. Zhu, D. Niyato, and R. Wang, “Joint cache placement, flight trajectory, and transmission power optimization for multi-uav assisted wireless networks,” IEEE Trans. Wirel. Commun., vol. 19, no. 8, pp. 5389–5403, 2020.
- Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint load balancing and offloading in vehicular edge computing and networks,” IEEE Internet Things J., vol. 6, no. 3, pp. 4377–4387, 2019.
- J. Peng, W. Tang, and H. Zhang, “Directional antennas modeling and coverage analysis of uav-assisted networks,” IEEE Wireless Commun. Lett., vol. 11, no. 10, pp. 2175–2179, 2022.
- V. 3GPP TR 36.873, “Study on 3D channel model for LTE (Release 12),” 2015.
- A. Al-Hourani, K. Sithamparanathan, and S. Lardner, “Optimal LAP altitude for maximum coverage,” IEEE Wirel. Commun. Lett., vol. 3, no. 6, pp. 569–572, 2014.
- G. T. . V16.1.0, “Study on channel model for frequencies from 0.5 to 100 GHz (Release 16),” 2020.
- Z. Zhang and R. Q. Hu, “Dense cellular network analysis with LoS/NLoS propagation and bounded path loss model,” IEEE Commun. Lett., vol. 22, no. 11, pp. 2386–2389, 2018.
- A. Boumaalif and O. Zytoune, “Power distribution of device-to-device communications under nakagami fading channel,” IEEE Trans. Mob. Comput., vol. 21, no. 6, pp. 2158–2167, 2022.
- Z. Yang, S. Bi, and Y. A. Zhang, “Online trajectory and resource optimization for stochastic uav-enabled MEC systems,” IEEE Trans. Wirel. Commun., vol. 21, no. 7, pp. 5629–5643, 2022.
- Y. Pan, C. Pan, K. Wang, H. Zhu, and J. Wang, “Cost minimization for cooperative computation framework in mec networks,” IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3670–3684, 2021.
- Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless communication with rotary-wing UAV,” IEEE Trans. Wirel. Commun., vol. 18, no. 4, pp. 2329–2345, 2019.
- L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, and A. Nallanathan, “Deep reinforcement learning based dynamic trajectory control for UAV-assisted mobile edge computing,” IEEE Trans. Mob. Comput., vol. 21, no. 10, pp. 3536–3550, 2022.
- A. Rubinstein, “Perfect equilibrium in a bargaining model,” Econom. J., pp. 97–109, 1982.
- V. 3GPP TR 138 901, “Study on channel model for frequencies from 0.5 to 100 GHz (Release 14),” 2018.
- B. Yang, G. Mao, M. Ding, X. Ge, and X. Tao, “Dense small cell networks: From noise-limited to dense interference-limited,” IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 4262–4277, 2018.
- S. A. Kazmi, T. N. Dang, I. Yaqoob, A. Manzoor, R. Hussain, A. Khan, C. S. Hong, and K. Salah, “A novel contract theory-based incentive mechanism for cooperative task-offloading in electrical vehicular networks,” IEEE Trans. Intell. Transp. Syst., 2021.
- Z. Yu, Y. Gong, S. Gong, and Y. Guo, “Joint task offloading and resource allocation in UAV-enabled mobile edge computing,” IEEE Internet Things J., vol. 7, no. 4, pp. 3147–3159, 2020.
- Z. Ning, K. Zhang, X. Wang, L. Guo, X. Hu, J. Huang, B. Hu, and R. Y. Kwok, “Intelligent edge computing in internet of vehicles: a joint computation offloading and caching solution,” IEEE Trans. Intell. Transport. Syst., vol. 22, no. 4, pp. 2212–2225, 2020.
- X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu, “Energy-efficient admission of delay-sensitive tasks for mobile edge computing,” IEEE Trans. Commun., vol. 66, no. 6, pp. 2603–2616, 2018.