Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boarding for ISS: Imbalanced Self-Supervised: Discovery of a Scaled Autoencoder for Mixed Tabular Datasets (2403.15790v1)

Published 23 Mar 2024 in cs.LG and stat.ML

Abstract: The field of imbalanced self-supervised learning, especially in the context of tabular data, has not been extensively studied. Existing research has predominantly focused on image datasets. This paper aims to fill this gap by examining the specific challenges posed by data imbalance in self-supervised learning in the domain of tabular data, with a primary focus on autoencoders. Autoencoders are widely employed for learning and constructing a new representation of a dataset, particularly for dimensionality reduction. They are also often used for generative model learning, as seen in variational autoencoders. When dealing with mixed tabular data, qualitative variables are often encoded using a one-hot encoder with a standard loss function (MSE or Cross Entropy). In this paper, we analyze the drawbacks of this approach, especially when categorical variables are imbalanced. We propose a novel metric to balance learning: a Multi-Supervised Balanced MSE. This approach reduces the reconstruction error by balancing the influence of variables. Finally, we empirically demonstrate that this new metric, compared to the standard MSE: i) outperforms when the dataset is imbalanced, especially when the learning process is insufficient, and ii) provides similar results in the opposite case.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com