Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Small Noise Analysis of Non-Parametric Closed-Loop Identification (2403.15771v2)

Published 23 Mar 2024 in eess.SY and cs.SY

Abstract: We revisit the problem of non-parametric closed-loop identification in frequency domain; we give a brief survey of the literature and provide a small noise analysis of the direct, indirect, and joint input-output methods when two independent experiments with identical excitation are used. The analysis is asymptotic in the noise variance (i.e., as the standard deviation of the innovations $\sigma \to 0$), for a finite data record of length $N$. We highlight the relationship between the estimators accuracy and the loop shape via asymptotic variance expressions given in terms of the sensitivity function. The results are illustrated using a numerical simulation example.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. P. M. Van den Hof and R. J. Schrama, “Identification and control — closed-loop issues,” Automatica, vol. 31, no. 12, pp. 1751–1770, 1995.
  2. Z. Zang, R. R. Bitmead, and M. Gevers, “Iterative weighted least-squares identification and weighted LQG control design,” Automatica, vol. 31, no. 11, pp. 1577–1594, 1995.
  3. H. Hjalmarsson, M. Gevers, and F. de Bruyne, “For model-based control design, closed-loop identification gives better performance,” Automatica, vol. 32, no. 12, pp. 1659–1673, 1996.
  4. U. Forssell and L. Ljung, “Closed-loop identification revisited,” Automatica, vol. 35, no. 7, pp. 1215–1241, 1999.
  5. M. Gevers, L. Ljung, and P. M. Van den Hof, “Asymptotic variance expressions for closed-loop identification and their relevance in identification for control,” IFAC Proceedings Volumes, vol. 30, no. 11, pp. 1393–1398, 1997.
  6. B. Ninness and H. Hjalmarsson, “On the frequency domain accuracy of closed-loop estimates,” Automatica, vol. 41, no. 7, pp. 1109–1122, 2005.
  7. ——, “Analysis of the variability of joint input–output estimation methods,” Automatica, vol. 41, no. 7, pp. 1123–1132, 2005.
  8. P. E. Wellstead, “Reference signals for closed-loop identification,” International Journal of Control, vol. 26, no. 6, pp. 945–962, 1977.
  9. ——, “Non-parametric methods of system identification,” Automatica, vol. 17, no. 1, pp. 55–69, 1981.
  10. H. Akaike, “On the use of a linear model for the identification of feedback systems,” Annals of the Institute of statistical mathematics, vol. 20, pp. 425–439, 1968.
  11. W. Heath, “Bias of indirect non-parametric transfer function estimates for plants in closed loop,” Automatica, vol. 37, no. 10, pp. 1529–1540, 2001.
  12. P. Broersen, “A comparison of transfer function estimators,” IEEE Transactions on Instrumentation and Measurement, vol. 44, no. 3, pp. 657–661, 1995.
  13. W. Heath, “Probability density function of indirect non-parametric transfer function estimates for plants in closed-loop,” IFAC Proceedings Volumes, vol. 33, no. 15, pp. 709–714, 2000.
  14. W. P. Heath, “Characterising non-parametric estimators in closed-loop: The finite data case,” in 2001 European Control Conference (ECC), 2001, pp. 3558–3563.
  15. W. Heath, “The variation of non-parametric estimates in closed-loop,” Automatica, vol. 39, no. 11, pp. 1849–1863, 2003.
  16. R. Pintelon and J. Schoukens, “Measurement of frequency response functions using periodic excitations, corrupted by correlated input/output errors,” IEEE Transactions on Instrumentation and Measurement, vol. 50, no. 6, pp. 1753–1760, 2001.
  17. R. Pintelon, Y. Rolain, and W. Van Moer, “Probability density function for frequency response function measurements using periodic signals,” IEEE Transactions on Instrumentation and Measurement, vol. 52, no. 1, pp. 61–68, 2003.
  18. J. Welsh and G. Goodwin, “Finite sample properties of indirect nonparametric closed-loop identification,” IEEE Transactions on Automatic Control, vol. 47, no. 8, pp. 1277–1292, 2002.
  19. P. Guillaume, I. Kollar, and R. Pintelon, “Statistical analysis of nonparametric transfer function estimates,” IEEE Transactions on Instrumentation and Measurement, vol. 45, no. 2, pp. 594–600, 1996.
  20. P. M. Van den Hof and R. J. Schrama, “An indirect method for transfer function estimation from closed loop data,” Automatica, vol. 29, no. 6, pp. 1523–1527, 1993.

Summary

We haven't generated a summary for this paper yet.