Proper Rainbow Saturation Numbers for Cycles (2403.15602v1)
Abstract: We say that an edge-coloring of a graph $G$ is proper if every pair of incident edges receive distinct colors, and is rainbow if no two edges of $G$ receive the same color. Furthermore, given a fixed graph $F$, we say that $G$ is rainbow $F$-saturated if $G$ admits a proper edge-coloring which does not contain any rainbow subgraph isomorphic to $F$, but the addition of any edge to $G$ makes such an edge-coloring impossible. The maximum number of edges in a rainbow $F$-saturated graph is the rainbow Tur\'an number, whose study was initiated in 2007 by Keevash, Mubayi, Sudakov, and Verstra\"ete. Recently, Bushaw, Johnston, and Rombach introduced study of a corresponding saturation problem, asking for the minimum number of edges in a rainbow $F$-saturated graph. We term this minimum the proper rainbow saturation number of $F$, denoted $\mathrm{sat}*(n,F)$. We asymptotically determine $\mathrm{sat}*(n,C_4)$, answering a question of Bushaw, Johnston, and Rombach. We also exhibit constructions which establish upper bounds for $\mathrm{sat}*(n,C_5)$ and $\mathrm{sat}*(n,C_6)$.
- G. Audemard and L. Simon. Glucose. https://github.com/audemard/glucose, 2024.
- Colored saturation parameters for rainbow subgraphs. Journal of Graph Theory, 86:375–386, Mar. 2017. doi:10.1002/jgt.22132.
- The rainbow saturation number is linear, 2022. arXiv:2211.08589.
- A. Biere. Picosat essentials. Journal on Satisfiability, Boolean Modeling and Computation, 4(2–4):75–97, May 2008. doi:10.3233/sat190039.
- Rainbow saturation. Graphs and Combinatorics, 38(5), Sept. 2022. doi:10.1007/s00373-022-02566-z.
- A survey of minimum saturated graphs. The Electronic Journal of Combinatorics, pages DS19:1–DS19:98, Oct. 2021. doi:10.37236/41.
- Rainbow saturation of graphs. Journal of Graph Theory, 94:421–444, Oct. 2017. doi:10.1002/jgt.22532.
- Problem 28. Wiskundige Opgaven met de Oplossingen, 10:60–61, 1910.
- Rainbow Turán problems. Combinatorics, Probability, and Computing, 16(1):109–126, 2007. doi:10.1017/S0963548306007760.
- L. Kászonyi and Z. Tuza. Saturated graphs with minimal number of edges. Journal of Graph Theory, 10:203–210, June 1986. doi:10.1002/jgt.3190100209.
- L. Ollman. K2,2subscript𝐾22{K}_{2,2}italic_K start_POSTSUBSCRIPT 2 , 2 end_POSTSUBSCRIPT-saturated graphs with a minimal number of edges. Proceedings of the 3rd Southeastern Conference on Combinatorics, Graph Theory, and Computing, pages 367–392, 1972.
- The Sage Developers. SageMath, the Sage Mathematics Software System, 2024. DOI 10.5281/zenodo.6259615. URL: https://www.sagemath.org.
- P. Turán. Eine Extremalaufgabe aus der Graphentheorie. Matematikai és Fizikai Lapok, 48:436–452, 1941.