Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proper Rainbow Saturation Numbers for Cycles (2403.15602v1)

Published 22 Mar 2024 in math.CO and cs.DM

Abstract: We say that an edge-coloring of a graph $G$ is proper if every pair of incident edges receive distinct colors, and is rainbow if no two edges of $G$ receive the same color. Furthermore, given a fixed graph $F$, we say that $G$ is rainbow $F$-saturated if $G$ admits a proper edge-coloring which does not contain any rainbow subgraph isomorphic to $F$, but the addition of any edge to $G$ makes such an edge-coloring impossible. The maximum number of edges in a rainbow $F$-saturated graph is the rainbow Tur\'an number, whose study was initiated in 2007 by Keevash, Mubayi, Sudakov, and Verstra\"ete. Recently, Bushaw, Johnston, and Rombach introduced study of a corresponding saturation problem, asking for the minimum number of edges in a rainbow $F$-saturated graph. We term this minimum the proper rainbow saturation number of $F$, denoted $\mathrm{sat}*(n,F)$. We asymptotically determine $\mathrm{sat}*(n,C_4)$, answering a question of Bushaw, Johnston, and Rombach. We also exhibit constructions which establish upper bounds for $\mathrm{sat}*(n,C_5)$ and $\mathrm{sat}*(n,C_6)$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. G. Audemard and L. Simon. Glucose. https://github.com/audemard/glucose, 2024.
  2. Colored saturation parameters for rainbow subgraphs. Journal of Graph Theory, 86:375–386, Mar. 2017. doi:10.1002/jgt.22132.
  3. The rainbow saturation number is linear, 2022. arXiv:2211.08589.
  4. A. Biere. Picosat essentials. Journal on Satisfiability, Boolean Modeling and Computation, 4(2–4):75–97, May 2008. doi:10.3233/sat190039.
  5. Rainbow saturation. Graphs and Combinatorics, 38(5), Sept. 2022. doi:10.1007/s00373-022-02566-z.
  6. A survey of minimum saturated graphs. The Electronic Journal of Combinatorics, pages DS19:1–DS19:98, Oct. 2021. doi:10.37236/41.
  7. Rainbow saturation of graphs. Journal of Graph Theory, 94:421–444, Oct. 2017. doi:10.1002/jgt.22532.
  8. Problem 28. Wiskundige Opgaven met de Oplossingen, 10:60–61, 1910.
  9. Rainbow Turán problems. Combinatorics, Probability, and Computing, 16(1):109–126, 2007. doi:10.1017/S0963548306007760.
  10. L. Kászonyi and Z. Tuza. Saturated graphs with minimal number of edges. Journal of Graph Theory, 10:203–210, June 1986. doi:10.1002/jgt.3190100209.
  11. L. Ollman. K2,2subscript𝐾22{K}_{2,2}italic_K start_POSTSUBSCRIPT 2 , 2 end_POSTSUBSCRIPT-saturated graphs with a minimal number of edges. Proceedings of the 3rd Southeastern Conference on Combinatorics, Graph Theory, and Computing, pages 367–392, 1972.
  12. The Sage Developers. SageMath, the Sage Mathematics Software System, 2024. DOI 10.5281/zenodo.6259615. URL: https://www.sagemath.org.
  13. P. Turán. Eine Extremalaufgabe aus der Graphentheorie. Matematikai és Fizikai Lapok, 48:436–452, 1941.
Citations (3)

Summary

We haven't generated a summary for this paper yet.