Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

WoLF: Wide-scope Large Language Model Framework for CXR Understanding (2403.15456v3)

Published 19 Mar 2024 in cs.AI and cs.CL

Abstract: Significant methodological strides have been made toward Chest X-ray (CXR) understanding via modern vision-LLMs (VLMs), demonstrating impressive Visual Question Answering (VQA) and CXR report generation abilities. However, existing CXR understanding frameworks still possess several procedural caveats. (1) Previous methods solely use CXR reports, which are insufficient for comprehensive Visual Question Answering (VQA), especially when additional health-related data like medication history and prior diagnoses are needed. (2) Previous methods use raw CXR reports, which are often arbitrarily structured. While modern LLMs can understand various text formats, restructuring reports for clearer, organized anatomy-based information could enhance their usefulness. (3) Current evaluation methods for CXR-VQA primarily emphasize linguistic correctness, lacking the capability to offer nuanced assessments of the generated answers. In this work, to address the aforementioned caveats, we introduce WoLF, a Wide-scope LLM Framework for CXR understanding. To resolve (1), we capture multi-faceted records of patients, which are utilized for accurate diagnoses in real-world clinical scenarios. Specifically, we adopt the Electronic Health Records (EHR) to generate instruction-following data suited for CXR understanding. Regarding (2), we enhance report generation performance by decoupling knowledge in CXR reports based on anatomical structure even within the attention step via masked attention. To address (3), we introduce an AI-evaluation protocol optimized for assessing the capabilities of LLM. Through extensive experimental validations, WoLF demonstrates superior performance over other models on MIMIC-CXR in the AI-evaluation arena about VQA (up to +9.47%p mean score) and by metrics about report generation (+7.3%p BLEU-1).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Seil Kang (5 papers)
  2. Donghyun Kim (129 papers)
  3. Junhyeok Kim (9 papers)
  4. Hyo Kyung Lee (1 paper)
  5. Seong Jae Hwang (32 papers)
Citations (1)
X Twitter Logo Streamline Icon: https://streamlinehq.com