Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cascading Blackout Severity Prediction with Statistically-Augmented Graph Neural Networks (2403.15363v1)

Published 22 Mar 2024 in eess.SY, cs.LG, and cs.SY

Abstract: Higher variability in grid conditions, resulting from growing renewable penetration and increased incidence of extreme weather events, has increased the difficulty of screening for scenarios that may lead to catastrophic cascading failures. Traditional power-flow-based tools for assessing cascading blackout risk are too slow to properly explore the space of possible failures and load/generation patterns. We add to the growing literature of faster graph-neural-network (GNN)-based techniques, developing two novel techniques for the estimation of blackout magnitude from initial grid conditions. First we propose several methods for employing an initial classification step to filter out safe "non blackout" scenarios prior to magnitude estimation. Second, using insights from the statistical properties of cascading blackouts, we propose a method for facilitating non-local message passing in our GNN models. We validate these two approaches on a large simulated dataset, and show the potential of both to increase blackout size estimation performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. I. Dobson, B. Carreras, V. Lynch, and D. Newman, “An initial model fo complex dynamics in electric power system blackouts,” in Hawaii International Conference on System Sciences, 2001, pp. 710–718.
  2. M. J. Eppstein and P. D. H. Hines, “A “random chemistry” algorithm for identifying collections of multiple contingencies that initiate cascading failure,” IEEE Transactions on Power Systems, vol. 27, no. 3, p. 1698–1705, Aug 2012.
  3. D. Kirschen, D. Jayaweera, D. Nedic, and R. Allan, “A probabilistic indicator of system stress,” IEEE Transactions on Power Systems, vol. 19, no. 3, pp. 1650–1657, 2004.
  4. Q. Chen and L. Mili, “Composite power system vulnerability evaluation to cascading failures using importance sampling and antithetic variates,” IEEE Transactions on Power Systems, vol. 28, no. 3, p. 2321–2330, Aug 2013.
  5. P. Henneaux and P.-E. Labeau, “Improving monte carlo simulation efficiency of level-i blackout probabilistic risk assessment,” in 2014 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Jul 2014, p. 1–6.
  6. J. Kim, J. A. Bucklew, and I. Dobson, “Splitting method for speedy simulation of cascading blackouts,” in 2013 IEEE Power & Energy Society General Meeting, Jul 2013, p. 1–1.
  7. S.-P. Wang, A. Chen, C.-W. Liu, C.-H. Chen, J. Shortle, and J.-Y. Wu, “Efficient splitting simulation for blackout analysis,” IEEE Transactions on Power Systems, vol. 30, no. 4, p. 1775–1783, Jul 2015.
  8. P. Rezaei, P. D. H. Hines, and M. J. Eppstein, “Estimating cascading failure risk with random chemistry,” IEEE Transactions on Power Systems, vol. 30, no. 5, p. 2726–2735, Sep 2015.
  9. I. Dobson, B. Carreras, and D. Newman, “A probabilistic loading-dependent model of cascading failure and possible implications for blackouts,” in 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the, Jan 2003, pp. 10 pp.–.
  10. I. Dobson, B. A. Carreras, and D. E. Newman, “A branching process approximation to cascading load-dependent system failure,” in Proceedings of the 37th Annual Hawaii International Conference on System Sciences, jan 2004, pp. 1–10.
  11. H. Xiao and E. M. Yeh, “Cascading link failure in the power grid: A percolation-based analysis,” in 2011 IEEE International Conference on Communications Workshops (ICC), 2011, pp. 1–6.
  12. Z. Kong and E. M. Yeh, “Correlated and cascading node failures in random geometric networks: A percolation view,” in 2012 Fourth International Conference on Ubiquitous and Future Networks (ICUFN), Jul 2012, p. 520–525.
  13. Z. Wang, D. Zhou, and Y. Hu, “Group percolation in interdependent networks,” Physical Review E, vol. 97, no. 3, p. 032306, Mar 2018.
  14. J. Zhang, E. Yeh, and E. Modiano, “Robustness of interdependent random geometric networks,” IEEE Transactions on Network Science and Engineering, vol. 6, no. 3, p. 474–487, Jul 2019.
  15. P. Hines, I. Dobson, and P. Rezaei, “Cascading power outages propagate locally in an influence graph that is not the actual grid topology,” in 2017 IEEE Power & Energy Society General Meeting, Jul. 2017, pp. 1–1.
  16. K. Zhou, I. Dobson, Z. Wang, A. Roitershtein, and A. P. Ghosh, “A markovian influence graph formed from utility line outage data to mitigate large cascades,” IEEE Transactions on Power Systems, vol. 35, no. 4, pp. 3224–3235, 2020.
  17. J. Qi, K. Sun, and S. Mei, “An interaction model for simulation and mitigation of cascading failures,” IEEE Transactions on Power Systems, vol. 30, no. 2, pp. 804–819, 2015.
  18. W. Ju, J. Qi, and K. Sun, “Simulation and analysis of cascading failures on an npcc power system test bed,” in 2015 IEEE Power & Energy Society General Meeting, 2015, pp. 1–5.
  19. Y. Liu, N. Zhang, D. Wu, A. Botterud, R. Yao, and C. Kang, “Searching for critical power system cascading failures with graph convolutional network,” IEEE Transactions on Control of Network Systems, vol. 8, no. 3, p. 1304–1313, Sep 2021.
  20. Y. Zhu, Y. Zhou, W. Wei, and N. Wang, “Cascading failure analysis based on a physics-informed graph neural network,” IEEE Transactions on Power Systems, vol. 38, no. 4, p. 3632–3641, Jul 2023.
  21. R. A. Shuvro, P. Das, M. M. Hayat, and M. Talukder, “Predicting cascading failures in power grids using machine learning algorithms,” in 2019 North American Power Symposium (NAPS), Oct 2019, p. 1–6.
  22. A. Varbella, B. Gjorgiev, and G. Sansavini, “Geometric deep learning for online prediction of cascading failures in power grids,” Reliability Engineering & System Safety, vol. 237, p. 109341, Sep 2023.
  23. Y. Zhu, Y. Zhou, W. Wei, and L. Zhang, “Real-time cascading failure risk evaluation with high penetration of renewable energy based on a graph convolutional network,” IEEE Transactions on Power Systems, p. 1–12, 2022.
  24. T. Ahmad and P. N. Papadopoulos, “Prediction of cascading failures and simultaneous learning of functional connectivity in power system,” in 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Oct 2022, p. 1–5.
  25. J. Chen, J. Thorp, and M. Parashar, “Analysis of electric power system disturbance data,” in Proceedings of the 34th Annual Hawaii International Conference on System Sciences, Jan 2001, p. 738–744.
  26. B. Carreras, D. Newman, I. Dobson, and A. Poole, “Evidence for self-organized criticality in electric power system blackouts,” in Proceedings of the 34th Annual Hawaii International Conference on System Sciences, Jan 2001, p. 705–709.
  27. S. N. Talukdar, J. Apt, M. Ilic, L. B. Lave, and M. G. Morgan, “Cascading failures: Survival versus prevention,” The Electricity Journal, vol. 16, no. 9, p. 25–31, Nov 2003.
  28. “Minds@UW,” https://minds.wisconsin.edu/, 2024.
  29. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in International Conference on Learning Representations (ICLR), 2017.
  30. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention networks,” in International Conference on Learning Representations, 2018.
  31. M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral filtering,” in Advances in Neural Information Processing Systems, 2016, pp. 3844–3852.
  32. K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?” in Proceedings of the International Conference on Learning Representations (ICLR), 2019.
  33. T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. Battaglia, “Learning mesh-based simulation with graph networks,” in International Conference on Learning Representations, 2021.
  34. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794.
  35. R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not all you need,” Information Fusion, vol. 81, pp. 84–90, 2022.
  36. L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based models still outperform deep learning on typical tabular data?” in Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2022.
  37. J. Bialek, E. Ciapessoni, D. Cirio, E. Cotilla-Sanchez, C. Dent, I. Dobson, P. Henneaux, P. Hines, J. Jardim, S. Miller, M. Panteli, M. Papic, A. Pitto, J. Quiros-Tortos, and D. Wu, “Benchmarking and validation of cascading failure analysis tools,” IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 4887–4900, 2016.
  38. C. Barrows, A. Bloom, A. Ehlen, J. Ikäheimo, J. Jorgenson, D. Krishnamurthy, J. Lau, B. McBennett, M. O’Connell, E. Preston, A. Staid, G. Stephen, and J.-P. Watson, “The ieee reliability test system: A proposed 2019 update,” IEEE Transactions on Power Systems, vol. PP, pp. 1–1, 07 2019.
  39. D. D. M. L. Community, “Official xgboost documentation.” [Online]. Available: https://xgboost.readthedocs.io/en/stable

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets