Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network Calculus Characterization of Congestion Control for Time-Varying Traffic (2403.15303v1)

Published 22 Mar 2024 in cs.NI and cs.PF

Abstract: Models for the dynamics of congestion control generally involve systems of coupled differential equations. Universally, these models assume that traffic sources saturate the maximum transmissions allowed by the congestion control method. This is not suitable for studying congestion control of intermittent but bursty traffic sources. In this paper, we present a characterization of congestion control for arbitrary time-varying traffic that applies to rate-based as well as window-based congestion control. We leverage the capability of network calculus to precisely describe the input-output relationship at network elements for arbitrary source traffic. We show that our characterization can closely track the dynamics of even complex congestion control algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolution measurement of data center microbursts,” in Proc. ACM IMC, November 2017, pp. 78–85.
  2. R. Kapoor, A. C. Snoeren, G. M. Voelker, and G. Porter, “Bullet trains: a study of NIC burst behavior at microsecond timescales,” in Proc. ACM CoNEXT, December 2013, pp. 133–138.
  3. X. Chen, S. L. Feibish, Y. Koral, J. Rexford, and O. Rottenstreich, “Catching the microburst culprits with Snappy,” in Proc. ACM SIGCOMM Workshop on Self-Driving Networks, August 2018, pp. 22–28.
  4. D. Shan, F. Ren, P. Cheng, R. Shu, and C. Guo, “Observing and mitigating micro-burst traffic in data center networks,” IEEE/ACM Transactions on Networking, vol. 28, no. 1, pp. 98–111, 2020.
  5. Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-scale RDMA deployments,” in Proc. ACM SIGCOMM, August 2015, pp. 523–536.
  6. S. Bensley, D. Thaler, P. Balasubramanian, L. Eggert, and G. Judd, “Data center TCP (DCTCP): TCP congestion control for data centers,” Internet Request for Comments, RFC 8257, October 2017.
  7. Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao, M. Zhang, F. Kelly, M. Alizadeh, and M. Yu, “HPCC: high precision congestion control,” in Proc. ACM SIGCOMM, August 2019, pp. 44–58.
  8. R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “TIMELY: RTT-based congestion control for the datacenter,” in Proc. ACM SIGCOMM, October 2015, pp. 537–550.
  9. G. Kumar, N. Dukkipati, K. Jang, H. M. G. Wassel, X. Wu, B. Montazeri, Y. Wang, K. Springborn, C. Alfeld, M. Ryan, D. Wetherall, and A. Vahdat, “Swift: delay is simple and effective for congestion control in the datacenter,” in Proc. ACM SIGCOMM, July 2020, pp. 514–528.
  10. A. Mushtaq, R. Mittal, J. McCauley, M. Alizadeh, S. Ratnasamy, and S. Shenker, “Datacenter congestion control,” ACM SIGCOMM Computer Communication Review, vol. 49, no. 3, pp. 32–38, 2019.
  11. S. Ketabi and Y. Ganjali, “Hierarchical congestion control (HCC): fairness and fast convergence for data centers,” in Proc. IFIP Networking, June 2022, pp. 1–9.
  12. D. Shan and F. Ren, “Improving ECN marking scheme with micro-burst traffic in data center networks,” in Proc. IEEE INFOCOM, May 2017, pp. 1–9.
  13. S. Yan, X. Wang, X. Zheng, Y. Xia, D. Liu, and W. Deng, “ACC: automatic ECN tuning for high-speed datacenter networks,” in Proc. ACM SIGCOMM, August 2021, pp. 384–397.
  14. Infiniband Trade Association, “InfiniBand Architecture Specification, Volume 1, Release 1.2.1,” 2007, November 2007.
  15. ——, “InfiniBand Architecture Specification Release 1.2.1 Annex A17: RoCEv2,” 2014, September 2014.
  16. K. He, E. Rozner, K. Agarwal, Y. Gu, W. Felter, J. Carter, and A. Akella, “AC/DC TCP: virtual congestion control enforcement for datacenter networks,” in Proc. ACM SIGCOMM, August 2016, pp. 244–257.
  17. Y. Liu, F. L. Presti, V. Misra, D. F. Towsley, and Y. Gu, “Fluid models and solutions for large-scale IP networks,” in Proc. ACM SIGMETRICS, June 2003, pp. 91–101.
  18. G. Vardoyan, C. V. Hollot, and D. Towsley, “Towards stability analysis of data transport mechanisms: a fluid model and its applications,” IEEE/ACM Transactions on Networking, vol. 29, no. 4, pp. 1730–1744, 2021.
  19. S. H. Low, F. Paganini, and J. C. Doyle, “Internet congestion control,” IEEE Control Systems Magazine, vol. 22, no. 1, pp. 28–43, 2002.
  20. S. Shakkottai and R. Srikant, “How good are deterministic fluid models of internet congestion control?” in Proc. IEEE INFOCOM, June 2002, pp. 497–505.
  21. M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of DCTCP: stability, convergence, and fairness,” in Proc. ACM SIGMETRICS, June 2011, pp. 73–84.
  22. S. Scherrer, M. Legner, A. Perrig, and S. Schmid, “Model-based insights on the performance, fairness, and stability of BBR,” in Proc. ACM IMC, October 2022, pp. 519–537.
  23. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016, pp. 770–778.
  24. V. Arun, M. T. Arashloo, A. Saeed, M. Alizadeh, and H. Balakrishnan, “Toward formally verifying congestion control behavior,” in Proc. ACM SIGCOMM, August 2021, pp. 1–16.
  25. L. S. Brakmo and L. L. Peterson, “TCP Vegas: end to end congestion avoidance on a global internet,” IEEE Journal on Selected Areas in Communications, vol. 13, no. 8, pp. 1465–1480, 1995.
  26. R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan, “Performance bounds for flow control protocols,” IEEE/ACM Transactions on Networking, vol. 7, no. 3, pp. 310–323, 1999.
  27. J. Liebeherr, “Duality of the max-plus and min-plus network calculus,” Foundations and Trends in Networking, vol. 11, no. 3–4, pp. 139–282, 2016.
  28. R. Zippo, P. Nikolaus, and G. Stea, “Extending the network calculus algorithmic toolbox for ultimately pseudo-periodic functions: pseudo-inverse and composition,” Discrete Event Dynamic Systems, vol. 33, no. 3, pp. 181–219, 2023.
  29. K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno and SACK TCP,” ACM SIGCOMM Computer Communication Review, vol. 26, no. 3, pp. 5–21, 1996.
  30. K. K. Ramakrishnan, S. Floyd, and D. L. Black, “The addition of explicit congestion notification (ecn) to IP,” Internet Request for Comments, RFC 3168, September 2001.
  31. S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397–413, 1993.
  32. IEEE, “IEEE standard for local and metropolitan area networks–media access control (MAC) bridges and virtual bridged local area networks–Amendment 17: Priority-based Flow Control,” IEEE Std 802.1Qbb, 2011.
  33. D.-M. Chiu and R. Jain, “Analysis of the increase and decrease algorithms for congestion avoidance in computer networks,” Computer Networks and ISDN Systems, vol. 17, no. 1, pp. 1–14, 1989.
  34. V. Jacobson, “Congestion avoidance and control,” in Proc. ACM SIGCOMM, August 1988, pp. 314–329.
  35. S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 64–74, 2008.
  36. C. Samios and J. K. Vernon, “Modeling the throughput of TCP Vegas,” Proc. ACM SIGMETRICS, p. 71–81, Jun. 2003.
  37. Nvidia Corporation. (2022) How to configure DCQCN values for ConnectX-4. (Accessed on: 2023-11-10). [Online]. Available: https://enterprise-support.nvidia.com/s/article/howto-configure-dcqcn--roce-cc--values-for-connectx-4--linux-x
  38. Cisco System. (2023) Cisco Data Center Networking Blueprint for AI/ML Applications. (Accessed on: 2023-11-10). [Online]. Available: https://www.cisco.com/c/en/us/td/docs/dcn/whitepapers/cisco-data-center-networking-blueprint-for-ai-ml-applications.html
  39. Juniper Networks. (2021) Data Center Quantized Congestion Notification (DCQCN). (Accessed on: 2023-11-10). [Online]. Available: https://www.juniper.net/documentation/us/en/software/junos/traffic-mgmt-qfx/topics/topic-map/cos-qfx-series-DCQCN.html
  40. IEEE, “IEEE standard for local and metropolitan area networks–virtual bridged local area network–Amendment 13: Congestion Notification,” IEEE Std 802.1Qau, 2010.
  41. F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for communication networks: shadow prices, proportional fairness and stability,” Journal of the Operational Research Society, vol. 49, no. 3, pp. 237–252, 1998.
  42. S. H. Low and D. E. Lapsley, “Optimization flow control. I. basic algorithm and convergence,” IEEE/ACM Transactions on Networking, vol. 7, no. 6, pp. 861–874, 1999.
  43. S. H. Low, “A duality model of TCP and queue management algorithms,” IEEE/ACM Transactions On Networking, vol. 11, no. 4, pp. 525–536, 2003.
  44. S. H. Low, L. L. Peterson, and L. Wang, “Understanding TCP Vegas: a duality model,” Journal of the ACM, vol. 49, no. 2, pp. 207–235, 2002.
  45. S. Kunniyur and R. Srikant, “End-to-end congestion control schemes: utility functions, random losses and ECN marks,” IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp. 689–702, 2003.
  46. V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED,” in Proc. ACM SIGCOMM, 2000, pp. 151–160.
  47. C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “A control theoretic analysis of RED,” in Proc. IEEE INFOCOM, 2001, pp. 1510–1519.
  48. C. V. Hollot, V. Misra, D. Towsley, and W. Gong, “Analysis and design of controllers for AQM routers supporting TCP flows,” IEEE Transactions on Automatic Control, vol. 47, no. 6, pp. 945–959, 2002.
  49. F. Baccelli and D. Hong, “TCP is max-plus linear and what it tells us on its throughput,” in Proc. ACM SIGCOMM, August 2000, pp. 219–230.
  50. H. Kim and J. C. Hou, “Network calculus based simulation for TCP congestion control: theorems, implementation and evaluation,” in Proc. IEEE INFOCOM, 2004, pp. 2844–2855.

Summary

We haven't generated a summary for this paper yet.