Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Unitary-invariant witnesses of quantum imaginarity (2403.15066v1)

Published 22 Mar 2024 in quant-ph

Abstract: Quantum theory is traditionally formulated using complex numbers. This imaginarity of quantum theory has been quantified as a resource with applications in discrimination tasks, pseudorandomness generation, and quantum metrology. Here we propose witnesses for imaginarity that are basis-independent, relying on measurements of unitary-invariant properties of sets of states. For 3 pure states, we completely characterize the invariant values attainable by quantum theory, and give a partial characterization for 4 pure states. We show that simple pairwise overlap measurements suffice to witness imaginarity of sets of 4 states, but not for sets of 3. Our witnesses are experimentally friendly, opening up a new path for measuring and using imaginarity as a resource.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. A. Hickey and G. Gour, Quantifying the imaginarity of quantum mechanics, J. Phys. A: Math. Theor. 51, 414009 (2018).
  2. E. Chitambar and G. Gour, Quantum resource theories, Rev. Mod. Phys. 91, 025001 (2019).
  3. T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113, 140401 (2014).
  4. E. C. Stueckelberg, Quantum theory in real Hilbert space, Helv. Phys. Acta 33, 458 (1960).
  5. E. C. G. Stueckelberg von Breidenbach and M. Guenin, Quantum theory in real Hilbert space II (Addenda and Errats), Helv. Phys. Acta 34, 621 (1961).
  6. A. Aleksandrova, V. Borish, and W. K. Wootters, Real-vector-space quantum theory with a universal quantum bit, Phys. Rev. A 87, 052106 (2013).
  7. L. Hardy and W. K. Wootters, Limited Holism and Real-Vector-Space Quantum Theory, Foundations of Physics 42, 454 (2011).
  8. W. K. Wootters, Entanglement Sharing in Real-Vector-Space Quantum Theory, Foundations of Physics 42, 19 (2010).
  9. W. K. Wootters, Optimal Information Transfer and Real-Vector-Space Quantum Theory, in Fundamental Theories of Physics (Springer Netherlands, 2015) pp. 21–43.
  10. T. Rudolph and L. Grover, A 2 rebit gate universal for quantum computing, arXiv:quant-ph/0210187 [quant-ph] (2002).
  11. D. Aharonov, A Simple Proof that Toffoli and Hadamard are Quantum Universal, arXiv:quant-ph/0301040 [quant-ph] (2003).
  12. M. McKague, M. Mosca, and N. Gisin, Simulating Quantum Systems Using Real Hilbert Spaces, Phys. Rev. Lett. 102, 020505 (2009).
  13. A. Bednorz and J. Batle, Optimal discrimination between real and complex quantum theories, Phys. Rev. A 106, 042207 (2022).
  14. U. Herzog and J. A. Bergou, Minimum-error discrimination between subsets of linearly dependent quantum states, Phys. Rev. A 65, 050305 (2002).
  15. H. Zhu, Hiding and masking quantum information in complex and real quantum mechanics, Phys. Rev. Res. 3, 033176 (2021).
  16. T. Haug, K. Bharti, and D. E. Koh, Pseudorandom unitaries are neither real nor sparse nor noise-robust, arXiv:2306.11677 [quant-ph] (2023).
  17. A. Carollo, B. Spagnolo, and D. Valenti, Uhlmann curvature in dissipative phase transitions, Scientific Reports 8, 9852 (2018).
  18. J. Miyazaki and K. Matsumoto, Imaginarity-free quantum multiparameter estimation, Quantum 6, 665 (2022).
  19. V. S. Shchesnovich and M. E. O. Bezerra, Collective phases of identical particles interfering on linear multiports, Phys. Rev. A 98, 033805 (2018).
  20. A. Budiyono, Operational interpretation and estimation of quantum trace-norm asymmetry based on weak-value measurement and some bounds, Phys. Rev. A 108, 012431 (2023).
  21. A. Budiyono and H. K. Dipojono, Quantifying quantum coherence via Kirkwood-Dirac quasiprobability, Phys. Rev. A 107, 022408 (2023).
  22. R. Wagner and E. F. Galvão, Simple proof that anomalous weak values require coherence, Phys. Rev. A 108, L040202 (2023).
  23. Y. Kedem, Using technical noise to increase the signal-to-noise ratio of measurements via imaginary weak values, Phys. Rev. A 85, 060102 (2012).
  24. O. Hosten and P. Kwiat, Observation of the Spin Hall Effect of Light via Weak Measurements, Science 319, 787 (2008).
  25. N. Brunner and C. Simon, Measuring Small Longitudinal Phase Shifts: Weak Measurements or Standard Interferometry?, Phys. Rev. Lett. 105, 010405 (2010).
  26. H. F. Hofmann, Uncertainty limits for quantum metrology obtained from the statistics of weak measurements, Phys. Rev. A 83, 022106 (2011).
  27. V. Bargmann, Note on Wigner’s theorem on symmetry operations, J. Math. Phys. 5, 862 (1964).
  28. Y. Quek, E. Kaur, and M. M. Wilde, Multivariate trace estimation in constant quantum depth, Quantum 8, 1220 (2024).
  29. Fraser, Thomas, An estimation theoretic approach to quantum realizability problems, Ph.D. thesis, University of Waterloo (2023).
  30. T.-Y. Chien and S. Waldron, A characterization of projective unitary equivalence of finite frames and applications, SIAM Journal on Discrete Mathematics 30, 976 (2016).
  31. I. Halperin, On the Gram Matrix, Canadian Mathematical Bulletin 5, 265–280 (1962).
  32. A. Chefles, R. Jozsa, and A. Winter, On the existence of physical transformations between sets of quantum states, International Journal of Quantum Information 02, 11–21 (2004).
  33. P. J. Davis, Circulant matrices, Vol. 2 (Wiley New York, 1979).
  34. N. Yunger Halpern, B. Swingle, and J. Dressel, Quasiprobability behind the out-of-time-ordered correlator, Phys. Rev. A 97, 042105 (2018).
  35. D. R. M. Arvidsson-Shukur, J. C. Drori, and N. Y. Halpern, Conditions tighter than noncommutation needed for nonclassicality, J. Phys. A: Math. Theor. 54, 284001 (2021).
  36. Y. Aharonov, D. Z. Albert, and L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett. 60, 1351 (1988).
  37. B. Seron, L. Novo, and N. J. Cerf, Boson bunching is not maximized by indistinguishable particles, Nature Photonics 17, 702–709 (2023).
  38. S. Pancharatnam, Generalized theory of interference, and its applications, Proceedings of the Indian Academy of Sciences - Section A 44, 247 (1956).
  39. M. V. Berry and S. Klein, Geometric phases from stacks of crystal plates, Journal of Modern Optics 43, 165 (1996).
  40. A. J. Dariusz Chruscinski, Geometric phases in classical and quantum mechanics, 1st ed., Progress in Mathematical Physics (Birkhäuser Boston, 2004).
  41. E. F. Galvão and D. J. Brod, Quantum and classical bounds for two-state overlaps, Phys. Rev. A 101, 062110 (2020).
  42. R. Wagner, A. Camillini, and E. F. Galvão, Coherence and contextuality in a Mach-Zehnder interferometer, Quantum 8, 1240 (2024c).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.