Unitary-invariant witnesses of quantum imaginarity (2403.15066v1)
Abstract: Quantum theory is traditionally formulated using complex numbers. This imaginarity of quantum theory has been quantified as a resource with applications in discrimination tasks, pseudorandomness generation, and quantum metrology. Here we propose witnesses for imaginarity that are basis-independent, relying on measurements of unitary-invariant properties of sets of states. For 3 pure states, we completely characterize the invariant values attainable by quantum theory, and give a partial characterization for 4 pure states. We show that simple pairwise overlap measurements suffice to witness imaginarity of sets of 4 states, but not for sets of 3. Our witnesses are experimentally friendly, opening up a new path for measuring and using imaginarity as a resource.
- A. Hickey and G. Gour, Quantifying the imaginarity of quantum mechanics, J. Phys. A: Math. Theor. 51, 414009 (2018).
- E. Chitambar and G. Gour, Quantum resource theories, Rev. Mod. Phys. 91, 025001 (2019).
- T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113, 140401 (2014).
- E. C. Stueckelberg, Quantum theory in real Hilbert space, Helv. Phys. Acta 33, 458 (1960).
- E. C. G. Stueckelberg von Breidenbach and M. Guenin, Quantum theory in real Hilbert space II (Addenda and Errats), Helv. Phys. Acta 34, 621 (1961).
- A. Aleksandrova, V. Borish, and W. K. Wootters, Real-vector-space quantum theory with a universal quantum bit, Phys. Rev. A 87, 052106 (2013).
- L. Hardy and W. K. Wootters, Limited Holism and Real-Vector-Space Quantum Theory, Foundations of Physics 42, 454 (2011).
- W. K. Wootters, Entanglement Sharing in Real-Vector-Space Quantum Theory, Foundations of Physics 42, 19 (2010).
- W. K. Wootters, Optimal Information Transfer and Real-Vector-Space Quantum Theory, in Fundamental Theories of Physics (Springer Netherlands, 2015) pp. 21–43.
- T. Rudolph and L. Grover, A 2 rebit gate universal for quantum computing, arXiv:quant-ph/0210187 [quant-ph] (2002).
- D. Aharonov, A Simple Proof that Toffoli and Hadamard are Quantum Universal, arXiv:quant-ph/0301040 [quant-ph] (2003).
- M. McKague, M. Mosca, and N. Gisin, Simulating Quantum Systems Using Real Hilbert Spaces, Phys. Rev. Lett. 102, 020505 (2009).
- A. Bednorz and J. Batle, Optimal discrimination between real and complex quantum theories, Phys. Rev. A 106, 042207 (2022).
- U. Herzog and J. A. Bergou, Minimum-error discrimination between subsets of linearly dependent quantum states, Phys. Rev. A 65, 050305 (2002).
- H. Zhu, Hiding and masking quantum information in complex and real quantum mechanics, Phys. Rev. Res. 3, 033176 (2021).
- T. Haug, K. Bharti, and D. E. Koh, Pseudorandom unitaries are neither real nor sparse nor noise-robust, arXiv:2306.11677 [quant-ph] (2023).
- A. Carollo, B. Spagnolo, and D. Valenti, Uhlmann curvature in dissipative phase transitions, Scientific Reports 8, 9852 (2018).
- J. Miyazaki and K. Matsumoto, Imaginarity-free quantum multiparameter estimation, Quantum 6, 665 (2022).
- V. S. Shchesnovich and M. E. O. Bezerra, Collective phases of identical particles interfering on linear multiports, Phys. Rev. A 98, 033805 (2018).
- A. Budiyono, Operational interpretation and estimation of quantum trace-norm asymmetry based on weak-value measurement and some bounds, Phys. Rev. A 108, 012431 (2023).
- A. Budiyono and H. K. Dipojono, Quantifying quantum coherence via Kirkwood-Dirac quasiprobability, Phys. Rev. A 107, 022408 (2023).
- R. Wagner and E. F. Galvão, Simple proof that anomalous weak values require coherence, Phys. Rev. A 108, L040202 (2023).
- Y. Kedem, Using technical noise to increase the signal-to-noise ratio of measurements via imaginary weak values, Phys. Rev. A 85, 060102 (2012).
- O. Hosten and P. Kwiat, Observation of the Spin Hall Effect of Light via Weak Measurements, Science 319, 787 (2008).
- N. Brunner and C. Simon, Measuring Small Longitudinal Phase Shifts: Weak Measurements or Standard Interferometry?, Phys. Rev. Lett. 105, 010405 (2010).
- H. F. Hofmann, Uncertainty limits for quantum metrology obtained from the statistics of weak measurements, Phys. Rev. A 83, 022106 (2011).
- V. Bargmann, Note on Wigner’s theorem on symmetry operations, J. Math. Phys. 5, 862 (1964).
- Y. Quek, E. Kaur, and M. M. Wilde, Multivariate trace estimation in constant quantum depth, Quantum 8, 1220 (2024).
- Fraser, Thomas, An estimation theoretic approach to quantum realizability problems, Ph.D. thesis, University of Waterloo (2023).
- T.-Y. Chien and S. Waldron, A characterization of projective unitary equivalence of finite frames and applications, SIAM Journal on Discrete Mathematics 30, 976 (2016).
- I. Halperin, On the Gram Matrix, Canadian Mathematical Bulletin 5, 265–280 (1962).
- A. Chefles, R. Jozsa, and A. Winter, On the existence of physical transformations between sets of quantum states, International Journal of Quantum Information 02, 11–21 (2004).
- P. J. Davis, Circulant matrices, Vol. 2 (Wiley New York, 1979).
- N. Yunger Halpern, B. Swingle, and J. Dressel, Quasiprobability behind the out-of-time-ordered correlator, Phys. Rev. A 97, 042105 (2018).
- D. R. M. Arvidsson-Shukur, J. C. Drori, and N. Y. Halpern, Conditions tighter than noncommutation needed for nonclassicality, J. Phys. A: Math. Theor. 54, 284001 (2021).
- Y. Aharonov, D. Z. Albert, and L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett. 60, 1351 (1988).
- B. Seron, L. Novo, and N. J. Cerf, Boson bunching is not maximized by indistinguishable particles, Nature Photonics 17, 702–709 (2023).
- S. Pancharatnam, Generalized theory of interference, and its applications, Proceedings of the Indian Academy of Sciences - Section A 44, 247 (1956).
- M. V. Berry and S. Klein, Geometric phases from stacks of crystal plates, Journal of Modern Optics 43, 165 (1996).
- A. J. Dariusz Chruscinski, Geometric phases in classical and quantum mechanics, 1st ed., Progress in Mathematical Physics (Birkhäuser Boston, 2004).
- E. F. Galvão and D. J. Brod, Quantum and classical bounds for two-state overlaps, Phys. Rev. A 101, 062110 (2020).
- R. Wagner, A. Camillini, and E. F. Galvão, Coherence and contextuality in a Mach-Zehnder interferometer, Quantum 8, 1240 (2024c).