Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
136 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
50 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Rheo-SINDy: Finding a Constitutive Model from Rheological Data for Complex Fluids Using Sparse Identification for Nonlinear Dynamics (2403.14980v3)

Published 22 Mar 2024 in cond-mat.soft

Abstract: Rheology plays a pivotal role in understanding the flow behavior of fluids by discovering governing equations that relate deformation and stress, known as constitutive equations. Despite the importance of these equations, current methods for deriving them lack a systematic methodology, often relying on sense of physics and incurring substantial costs. To overcome this problem, we propose a novel method named Rheo-SINDy, which employs the sparse identification of nonlinear dynamics (SINDy) algorithm for discovering constitutive models from rheological data. Rheo-SINDy was applied to five distinct scenarios, four with well-established constitutive equations and one without predefined equations. Our results demonstrate that Rheo-SINDy successfully identified accurate models for the known constitutive equations and derived physically plausible approximate models for the scenario without established equations. Notably, the identified approximate models can accurately reproduce nonlinear shear rheological properties, especially at steady state, including shear thinning. These findings validate the robustness of Rheo-SINDy in handling data complexities and underscore its efficacy as a tool for advancing the development of data-driven approaches in rheology.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Brunton S L and Kutz J M 2022 Data-Driven Science and Engineering 2nd ed (Cambridge University Press)
  2. Brunton S L, Proctor J L and Kutz J N 2016 Proc. Natl. Acad. Sci. USA 113 3932–3937
  3. Kaheman K, Brunton S L and Nathan Kutz J 2022 Mach. Learn.: Sci. Technol. 3 015031
  4. Schmidt M and Lipson H 2009 Science 324 81–85
  5. Bongard J and Lipson H 2007 Proc. Natl. Acad. Sci. USA 104 9943–9948
  6. Udrescu S M and Tegmark M 2020 Sci. Adv. 6 eaay2631
  7. Raissi M, Perdikaris P and Karniadakis G E 2019 Journal of computational physics 378 686–707 ISSN 0021-9991
  8. Rosofsky S G, Al Majed H and Huerta E A 2023 Machine Learning: Science and Technology 4 025022
  9. Larson R G 1988 Constitutive Equations for Polymer Melts and Solutions (Butterworths Series in Chemical Engineering)
  10. Rouse P E 1953 J. Chem. Phys. 21 1272–1280
  11. Doi M and Edwards S F 1986 The Theory of Polymer Dynamics (Oxford University Press)
  12. Doi M and Takimoto J 2003 Phil. Trans. R. Soc. A. 361 641–652
  13. Likhtman A E 2005 Macromolecules 38 6128–6139
  14. Jamali S 2023 Rheology Bulletin 92(1) 20–24
  15. Miyamoto S 2024 Nihon Reoroji Gakkaishi (J. Soc. Rheol. Jpn.) 52 15–19
  16. Mahmoudabadbozchelou M and Jamali S 2021 Sci. Rep. 11 12015
  17. Mahmoudabadbozchelou M, Karniadakis G E and Jamali S 2022 Soft Matter 18(1) 172–185
  18. Saadat M, Mahmoudabadbozchelou M and Jamali S 2022 Rheol. Acta 61 721–732
  19. Lennon K R, McKinley G H and Swan J W 2023 Proc. Natl. Acad. Sci. USA 120 e2304669120
  20. Seryo N, Molina J J and Taniguchi T 2021 Nihon Reoroji Gakkaishi (J. Soc. Rheol. Jpn.) 49 97–113
  21. Miyamoto S, Molina J J and Taniguchi T 2023 Phys. Fluids 35 063113
  22. Bird R B, Armstrong R C and Hassager O 1987 Dynamics of Polymeric Liquids 2nd ed vol 2 (Oxford University Press)
  23. Graham M D 2014 Phys. Fluids 26 101301
  24. Mochimaru Y 1983 J. Non-Newtonian Fluid Mech. 12 135–152
  25. Sato T and Taniguchi T 2019 Macromolecules 52 3951–3964
  26. Miyamoto S, Sato T and Taniguchi T 2023 Rheol. Acta 62 57–70
  27. Sato T and Larson R G 2022 J. Rheol. 66 639–656
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com