Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TEeVTOL: Balancing Energy and Time Efficiency in eVTOL Aircraft Path Planning Across City-Scale Wind Fields (2403.14877v1)

Published 21 Mar 2024 in cs.RO

Abstract: Electric vertical-takeoff and landing (eVTOL) aircraft, recognized for their maneuverability and flexibility, offer a promising alternative to our transportation system. However, the operational effectiveness of these aircraft faces many challenges, such as the delicate balance between energy and time efficiency, stemming from unpredictable environmental factors, including wind fields. Mathematical modeling-based approaches have been adopted to plan aircraft flight path in urban wind fields with the goal to save energy and time costs. While effective, they are limited in adapting to dynamic and complex environments. To optimize energy and time efficiency in eVTOL's flight through dynamic wind fields, we introduce a novel path planning method leveraging deep reinforcement learning. We assess our method with extensive experiments, comparing it to Dijkstra's algorithm -- the theoretically optimal approach for determining shortest paths in a weighted graph, where weights represent either energy or time cost. The results show that our method achieves a graceful balance between energy and time efficiency, closely resembling the theoretically optimal values for both objectives.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. E. Kelsey, “The future of mobility: Urban air,” https://www.arup.com/perspectives/the-future-of-mobility-urban-air#, accessed: 2023-08-30.
  2. A. Straubinger, R. Rothfeld, M. Shamiyeh, K.-D. Büchter, J. Kaiser, and K. O. Plötner, “An overview of current research and developments in urban air mobility–setting the scene for uam introduction,” Journal of Air Transport Management, vol. 87, p. 101852, 2020.
  3. A. P. Cohen, S. A. Shaheen, and E. M. Farrar, “Urban air mobility: History, ecosystem, market potential, and challenges,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 9, pp. 6074–6087, 2021.
  4. A. Bauranov and J. Rakas, “Designing airspace for urban air mobility: A review of concepts and approaches,” Progress in Aerospace Sciences, vol. 125, p. 100726, 2021.
  5. T. Abby, “Nasa and uber test system for future urban air transport,” https://www.nasa.gov/centers-and-facilities/ames/nasa-and-uber-test-system-for-future-urban-air-transport/, accessed: 2023-09-30.
  6. Boyle Alan, “Morgan stanley says market for self-flying cars could rise to 1.5 trillion dollars by 2040,” https://www.geekwire.com/2018/morgan-stanley-report-says-market-self-flying-cars-hit-1-5-trillion-2040/, 2018, accessed: 2023-09-30.
  7. B. Paul, “Making sense of advanced air mobility market projections,” https://aerospaceamerica.aiaa.org/making-sense-of-advanced-air-mobility-market-projections/, accessed: 2023-10-30.
  8. J. Ware and N. Roy, “An analysis of wind field estimation and exploitation for quadrotor flight in the urban canopy layer,” in 2016 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2016, pp. 1507–1514.
  9. Y. Wu, K. H. Low, B. Pang, and Q. Tan, “Swarm-based 4d path planning for drone operations in urban environments,” IEEE Transactions on Vehicular Technology, vol. 70, pp. 7464–7479, 8 2021.
  10. X. Zhou, K. Xie, K. Huang, Y. Liu, Y. Zhou, M. Gong, and H. Huang, “Offsite aerial path planning for efficient urban scene reconstruction,” ACM Transactions on Graphics, vol. 39, pp. 1–16, 12 2020.
  11. D. Hong, S. Lee, Y. H. Cho, D. Baek, J. Kim, and N. Chang, “Energy-efficient online path planning of multiple drones using reinforcement learning,” IEEE Transactions on Vehicular Technology, vol. 70, pp. 9725–9740, 10 2021.
  12. M. Forkan, M. M. Rizvi, and M. A. M. Chowdhury, “Optimal path planning of unmanned aerial vehicles (uavs) for targets touring: Geometric and arc parameterization approaches,” PLOS ONE, vol. 17, no. 10, pp. 1–20, 10 2022. [Online]. Available: https://doi.org/10.1371/journal.pone.0276105
  13. Q. Chen, Q. He, and D. Zhang, “Uav path planning based on an improved chimp optimization algorithm,” Axioms, vol. 12, no. 7, 2023. [Online]. Available: https://www.mdpi.com/2075-1680/12/7/702
  14. N. Babu, I. Donevski, A. Valcarce, P. Popovski, J. J. Nielsen, and C. B. Papadias, “Fairness-based energy-efficient 3-d path planning of a portable access point: A deep reinforcement learning approach,” IEEE Open Journal of the Communications Society, vol. 3, pp. 1487–1500, 2022.
  15. Y. Wang, Z. Chu, and Y. Hu, “Path planning of unmanned underwater vehicles based on deep reinforcement learning algorithm,” in 2023 International Conference on Advanced Robotics and Mechatronics (ICARM).   IEEE, 2023, pp. 250–254.
  16. M. Ramezani, H. Habibi, J. luis Sanchez Lopez, and H. Voos, “Uav path planning employing mpc- reinforcement learning method considering collision avoidance,” 2023.
  17. G.-T. Tu and J.-G. Juang, “Uav path planning and obstacle avoidance based on reinforcement learning in 3d environments,” in Actuators, vol. 12, no. 2.   MDPI, 2023, p. 57.
  18. B. G. Maciel-Pearson, L. Marchegiani, S. Akcay, A. Atapour-Abarghouei, J. Garforth, and T. P. Breckon, “Online deep reinforcement learning for autonomous uav navigation and exploration of outdoor environments,” arXiv preprint arXiv:1912.05684, 2019.
  19. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” 2017.
  20. Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in Proceedings of the 26th annual international conference on machine learning, 2009, pp. 41–48.
  21. A. A. Al-Habob, O. A. Dobre, S. Muhaidat, and H. V. Poor, “Energy-efficient data dissemination using a uav: An ant colony approach,” IEEE Wireless Communications Letters, vol. 10, pp. 16–20, 1 2021.
  22. Y. Wan, Y. Zhong, A. Ma, and L. Zhang, “An accurate uav 3-d path planning method for disaster emergency response based on an improved multiobjective swarm intelligence algorithm,” IEEE Transactions on Cybernetics, vol. 53, pp. 2658–2671, 4 2023.
  23. L. Huan, Z. Ning, and L. Qiang, “Uav path planning based on an improved ant colony algorithm,” in 2021 4th International Conference on Intelligent Autonomous Systems (ICoIAS), 2021, pp. 357–360.
  24. B. Zhu, E. Bedeer, H. H. Nguyen, R. Barton, and J. Henry, “Uav trajectory planning in wireless sensor networks for energy consumption minimization by deep reinforcement learning,” IEEE Transactions on Vehicular Technology, vol. 70, pp. 9540–9554, 9 2021.
  25. M. Chodnicki, B. Siemiatkowska, W. Stecz, and S. Stępień, “Energy efficient uav flight control method in an environment with obstacles and gusts of wind,” Energies, vol. 15, p. 3730, 5 2022.
  26. A. Bahabry, X. Wan, H. Ghazzai, H. Menouar, G. Vesonder, and Y. Massoud, “Low-altitude navigation for multi-rotor drones in urban areas,” IEEE Access, vol. 7, pp. 87 716–87 731, 2019.
  27. P. Yao, H. Wang, and C. Liu, “3-d dynamic path planning for uav based on interfered fluid flow,” in Proceedings of 2014 IEEE Chinese guidance, navigation and control conference.   IEEE, 2014, pp. 997–1002.
  28. Q. Yang, J. Liu, and L. Li, “Path planning of uavs under dynamic environment based on a hierarchical recursive multiagent genetic algorithm,” in 2020 IEEE congress on evolutionary computation (CEC).   IEEE, 2020, pp. 1–8.
  29. Z. Zhang, J. Wu, J. Dai, and C. He, “A novel real-time penetration path planning algorithm for stealth uav in 3d complex dynamic environment,” IEEE Access, vol. 8, pp. 122 757–122 771, 2020.
  30. X. Bai, H. Jiang, J. Cui, K. Lu, P. Chen, and M. Zhang, “Uav path planning based on improved a <math id="m1"> <mo>∗</mo> </math> and dwa algorithms,” International Journal of Aerospace Engineering, vol. 2021, pp. 1–12, 9 2021.
  31. X. Liu, Y. Li, and Z. Xie, “Path planning of uav based on error correction,” in Proceedings of the 2021 13th International Conference on Machine Learning and Computing, ser. ICMLC ’21.   New York, NY, USA: Association for Computing Machinery, 2021, p. 392–396. [Online]. Available: https://doi.org/10.1145/3457682.3457742
  32. J. Sandino, J. Galvez–Serna, N. Mandel, F. Vanegas, and F. Gonzalez, “Autonomous mapping of desiccation cracks via a probabilistic-based motion planner onboard uavs,” in 2022 IEEE Aerospace Conference (AERO), 2022, pp. 1–14.
  33. Y. Zhou, L. Long, and Y. Lin, “Application research of “vehicle+ uav” mode based on floyd and genetic algorithm in 5g era,” in 2023 IEEE International Conference on Image Processing and Computer Applications (ICIPCA).   IEEE, 2023, pp. 1705–1709.
  34. Z. Xu, Q. Wang, F. Kong, H. Yu, S. Gao, and D. Pan, “Ga-dqn: A gravity-aware dqn based uav path planning algorithm,” in 2022 IEEE International Conference on Unmanned Systems (ICUS).   IEEE, 2022, pp. 1215–1220.
  35. Y. Li and M. Liu, “Path planning of electric vtol uav considering minimum energy consumption in urban areas,” Sustainability, vol. 14, p. 13421, 10 2022.
  36. X. Wang, M. C. Gursoy, T. Erpek, and Y. E. Sagduyu, “Learning-based uav path planning for data collection with integrated collision avoidance,” IEEE Internet of Things Journal, vol. 9, pp. 16 663–16 676, 9 2022.
  37. M. A. Luna, M. S. A. Isaac, A. R. Ragab, P. Campoy, P. F. Peña, and M. Molina, “Fast multi-uav path planning for optimal area coverage in aerial sensing applications,” Sensors, vol. 22, p. 2297, 3 2022.
  38. X. Qiu, C. Gao, K. Wang, and W. Jing, “Attitude control of a moving mass–actuated uav based on deep reinforcement learning,” Journal of Aerospace Engineering, vol. 35, 3 2022.
  39. X. Liu, L. Zhou, X. Zhang, X. Tan, and J. Wei, “A 3d rem-guided uav path planning method under communication connectivity constraints,” Wireless Communications and Mobile Computing, vol. 2022, pp. 1–11, 9 2022.
  40. D. Zhang, X. Li, G. Ren, J. Yao, K. Chen, and X. Li, “Three-dimensional path planning of uavs in a complex dynamic environment based on environment exploration twin delayed deep deterministic policy gradient,” Symmetry, vol. 15, p. 1371, 7 2023.
  41. D. Zhang, Z. Xuan, Y. Zhang, J. Yao, X. Li, and X. Li, “Path planning of unmanned aerial vehicle in complex environments based on state-detection twin delayed deep deterministic policy gradient,” Machines, vol. 11, p. 108, 1 2023.
  42. S. Hu, X. Yuan, W. Ni, X. Wang, and A. Jamalipour, “Ris-assisted jamming rejection and path planning for uav-borne iot platform: A new deep reinforcement learning framework,” 2023.
  43. Y. Xu, J. Li, B. Wu, J. Wu, H. Deng, and D. Hui, “Cooperative landing on mobile platform for multiple unmanned aerial vehicles via reinforcement learning,” Journal of Aerospace Engineering, vol. 37, 1 2024.
  44. L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry, “Implementation matters in deep policy gradients: A case study on ppo and trpo,” 2020.
  45. Y. Shen, W. Li, and M. C. Lin, “Inverse reinforcement learning with hybrid-weight trust-region optimization and curriculum learning for autonomous maneuvering,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 7421–7428.
  46. “Sidefx:houdini,” https://www.sidefx.com/products/houdini/, 2020, Accessed: 2023-11-05.
  47. “Unreal engine 5,” https://www.unrealengine.com/en-US, 2020, Accessed: 2023-10-05.
  48. “Openfoam,” https://www.openfoam.com/, 2020, Accessed: 2023-08-05.
  49. “Paraview,” https://www.paraview.org/, 2020, Accessed: 2023-09-05.
  50. G. Alfonsi, “Reynolds-averaged navier–stokes equations for turbulence modeling,” 2009.
  51. H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, “A tensorial approach to computational continuum mechanics using object-oriented techniques,” Computers in Physics, vol. 12, no. 6, p. 620, dec 1998. [Online]. Available: http://scitation.aip.org/content/aip/journal/cip/12/6/10.1063/1.168744
  52. H. Li and J. Sansalone, “Benchmarking Reynolds-Averaged Navier–Stokes Turbulence Models for Water Clarification Systems,” Journal of Environmental Engineering, vol. 147, no. 9, p. 04021031, jul 2021. [Online]. Available: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0001889
  53. B. Launder and D. Spalding, “The numerical computation of turbulent flows,” Computer Methods in Applied Mechanics and Engineering, vol. 3, no. 2, pp. 269–289, 1974.
  54. E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, vol. 1, pp. 269–271, 12 1959.
  55. M. Sniedovich, “Dijkstra’s algorithm revisited: the dynamic programming connexion,” Control and Cybernetics, vol. 35, pp. 599–620, 2006. [Online]. Available: https://api.semanticscholar.org/CorpusID:12630092
  56. W. Li, D. Wolinski, and M. C. Lin, “City-scale traffic animation using statistical learning and metamodel-based optimization,” ACM Trans. Graph., vol. 36, no. 6, pp. 200:1–200:12, 2017.
  57. D. Wang, W. Li, L. Zhu, and J. Pan, “Learning to control and coordinate mixed traffic through robot vehicles at complex and unsignalized intersections,” 2023.
  58. D. Wang, W. Li, and J. Pan, “Large-scale mixed traffic control using dynamic vehicle routing and privacy-preserving crowdsourcing,” IEEE Internet of Things Journal, vol. 11, no. 2, pp. 1981–1989, 2024.
  59. M. Villarreal, D. Wang, J. Pan, and W. Li, “Analyzing emissions and energy efficiency in mixed traffic control at unsignalized intersections,” in IEEE Forum for Innovative Sustainable Transportation Systems (FISTS), 2024.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com