Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating Panoramic 3D Estimation in Indoor Lighting Analysis (2403.14836v2)

Published 21 Mar 2024 in cs.CV

Abstract: This paper presents the use of panoramic 3D estimation in lighting simulation. Conventional lighting simulation necessitates detailed modeling as input, resulting in significant labor effort and time cost. The 3D layout estimation method directly takes a single panorama as input and generates a lighting simulation model with room geometry and window aperture. We evaluate the simulation results by comparing the luminance errors between on-site High Dynamic Range (HDR) photographs, 3D estimation model, and detailed model in panoramic representation and fisheye perspective. Given the selected scene, the results demonstrate the estimated room layout is reliable for lighting simulation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. J. Mardaljevic, “Examples of climate-based daylight modelling: Cibse national conference 2006: Engineering the future,” Oval Cricket Ground, London, UK, pp. 21–22, 2006.
  2. NREL, “Energyplus weather data,” 2023. [Online]. Available: https://energyplus.net/weather
  3. CIE, “Spitial distribution of daylight-cie standard general sky,” CIE S 011.1/E, 2003.
  4. C. F. Reinhart, J. Mardaljevic, and Z. Rogers, “Dynamic daylight performance metrics for sustainable building design,” Leukos, vol. 3, no. 1, pp. 7–31, 2006.
  5. G. Ji, T. Ou, and A. Sawyer, “View-based luminance mapping in open workplace,” in 2022 Design Computation Input/Output Conference, 2022.
  6. G. Ji, “Daylight availability and occupant visual comfort in seattle multi-family housing,” in ASHRAE Topical Conference Proceedings.   American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc., 2020, pp. 93–102.
  7. G. Ji and A. Sawyer, “Using illuminance ranges and target areas to analyze daylight in multi-dwelling units,” in 2022 Building Performance Analysis Conference and SimBuild, vol. 10.   ASHRAE/IBPSA-USA, 2022, pp. 1–10.
  8. G. J. Ward, “The radiance lighting simulation and rendering system,” in Proceedings of the 21st annual conference on Computer graphics and interactive techniques, 1994, pp. 459–472.
  9. N. L. Jones and C. F. Reinhart, “Experimental validation of ray tracing as a means of image-based visual discomfort prediction,” Building and Environment, vol. 113, pp. 131–150, 2017.
  10. B. Yang, T. Jiang, W. Wu, Y. Zhou, and L. Dai, “Automated semantics and topology representation of residential-building space using floor-plan raster maps,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 7809–7825, 2022.
  11. Z. Zeng, X. Li, Y. K. Yu, and C.-W. Fu, “Deep floor plan recognition using a multi-task network with room-boundary-guided attention,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9096–9104.
  12. J. M. Coughlan and A. L. Yuille, “Manhattan world: Compass direction from a single image by bayesian inference,” in Proceedings of the seventh IEEE international conference on computer vision, vol. 2.   IEEE, 1999, pp. 941–947.
  13. H.-T. Cheng, C.-H. Chao, J.-D. Dong, H.-K. Wen, T.-L. Liu, and M. Sun, “Cube padding for weakly-supervised saliency prediction in 360 videos,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1420–1429.
  14. F.-E. Wang, Y.-H. Yeh, M. Sun, W.-C. Chiu, and Y.-H. Tsai, “Led2-net: Monocular 360deg layout estimation via differentiable depth rendering,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 12 956–12 965.
  15. C. Zou, A. Colburn, Q. Shan, and D. Hoiem, “Layoutnet: Reconstructing the 3d room layout from a single rgb image,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 2051–2059.
  16. Y. Zhang, S. Song, P. Tan, and J. Xiao, “Panocontext: A whole-room 3d context model for panoramic scene understanding,” in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part VI 13.   Springer, 2014, pp. 668–686.
  17. S.-T. Yang, F.-E. Wang, C.-H. Peng, P. Wonka, M. Sun, and H.-K. Chu, “Dula-net: A dual-projection network for estimating room layouts from a single rgb panorama,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 3363–3372.
  18. S. Huang, S. Qi, Y. Zhu, Y. Xiao, Y. Xu, and S.-C. Zhu, “Holistic 3d scene parsing and reconstruction from a single rgb image,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 187–203.
  19. H. Izadinia, Q. Shan, and S. M. Seitz, “Im2cad,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 5134––5143.
  20. Y. Nie, X. Han, S. Guo, Y. Zheng, J. Chang, and J. J. Zhang, “Total3dunderstanding: Joint layout, object pose and mesh reconstruction for indoor scenes from a single image,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 55–64.
  21. P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in In SIGGRAPH 2008 classes.   ACM, 2008, pp. 1–10.
  22. T. Mitsunaga and S. K. Nayar, “Radiometric self calibration,” in Proceedings. 1999 IEEE computer society conference on computer vision and pattern recognition (Cat. No PR00149), vol. 1.   IEEE, 1999, pp. 374–380.
  23. G. Ji, “Calibrated hdr (cali-hdr) dataset, https://github.com/gzhji/cali-hdr-dataset,” 2023. [Online]. Available: https://github.com/Gzhji/Cali-HDR-Dataset
  24. G. Ji, A. O. Sawyer, and S. G. Narasimhan, “Virtual home staging: Inverse rendering and editing an indoor panorama under natural illumination,” in International Symposium on Visual Computing.   Springer, 2023, pp. 329–342.
  25. B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, and A. Torralba, “Semantic understanding of scenes through the ade20k dataset,” International Journal on Computer Vision, 2018.
  26. Y. Zhou, H. Qi, and Y. Ma, “End-to-end wireframe parsing,” in ICCV 2019, 2019.
  27. R. McNeel et al., “Rhino 6. windows and mac. seattle, wa: Robert mcneel & associates,” 2023. [Online]. Available: https://www.rhino3d.com/
  28. S. Davidson, “Rhino patch in grasshopper,” 2023. [Online]. Available: https://www.grasshopper3d.com/forum/topics/rhino-patch-in-grasshopper
  29. Solemma, “Climatestudio,” 2023. [Online]. Available: https://www.solemma.com/climatestudio
  30. J. Wienold and J. Christoffersen, “Evaluation methods and development of a new glare prediction model for daylight environments with the use of ccd cameras,” Energy and buildings, vol. 38, no. 7, pp. 743–757, 2006.
  31. M. N. Inanici, “Evaluation of high dynamic range photography as a luminance data acquisition system,” Lighting Research & Technology, vol. 38, no. 2, pp. 123–134, 2006.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com