Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolving Benchmark Functions to Compare Evolutionary Algorithms via Genetic Programming (2403.14146v1)

Published 21 Mar 2024 in cs.NE and cs.AI

Abstract: In this study, we use Genetic Programming (GP) to compose new optimization benchmark functions. Optimization benchmarks have the important role of showing the differences between evolutionary algorithms, making it possible for further analysis and comparisons. We show that the benchmarks generated by GP are able to differentiate algorithms better than human-made benchmark functions. The fitness measure of the GP is the Wasserstein distance of the solutions found by a pair of optimizers. Additionally, we use MAP-Elites to both enhance the search power of the GP and also illustrate how the difference between optimizers changes by various landscape features. Our approach provides a novel way to automate the design of benchmark functions and to compare evolutionary algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. J. R. Koza, “Genetic programming as a means for programming computers by natural selection,” Statistics and computing, vol. 4, pp. 87–112, 1994.
  2. L. V. Kantorovich, “Mathematical methods of organizing and planning production,” Management science, vol. 6, no. 4, pp. 366–422, 1960.
  3. J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping elites,” arXiv preprint arXiv:1504.04909, 2015.
  4. K. M. Malan, “A survey of advances in landscape analysis for optimisation,” Algorithms, vol. 14, no. 2, p. 40, 2021.
  5. P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger, and S. Tiwari, “Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization,” KanGAL report, vol. 2005005, no. 2005, p. 2005, 2005.
  6. R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces,” Journal of global optimization, vol. 11, pp. 341–359, 1997.
  7. R. Tanabe and A. Fukunaga, “Success-history based parameter adaptation for differential evolution,” in 2013 IEEE congress on evolutionary computation, pp. 71–78, IEEE, 2013.
  8. N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evolution strategies,” Evolutionary computation, vol. 9, no. 2, pp. 159–195, 2001.
  9. T. Jones, S. Forrest, et al., “Fitness distance correlation as a measure of problem difficulty for genetic algorithms.,” in ICGA, vol. 95, pp. 184–192, 1995.
  10. C. M. Reidys and P. F. Stadler, “Neutrality in fitness landscapes,” Applied Mathematics and Computation, vol. 117, no. 2-3, pp. 321–350, 2001.
  11. M. Jamil and X.-S. Yang, “A literature survey of benchmark functions for global optimisation problems,” International Journal of Mathematical Modelling and Numerical Optimisation, vol. 4, no. 2, pp. 150–194, 2013.
  12. D. H. Ackley, “A connectionist machine for genetic hillclimbing,” The Kluwer International Series in Engineering and Computer Science, 1987.
  13. T. Bartz-Beielstein, C. Doerr, D. v. d. Berg, J. Bossek, S. Chandrasekaran, T. Eftimov, A. Fischbach, P. Kerschke, W. La Cava, M. Lopez-Ibanez, et al., “Benchmarking in optimization: Best practice and open issues,” arXiv preprint arXiv:2007.03488, 2020.
  14. M. A. Muñoz and K. Smith-Miles, “Generating new space-filling test instances for continuous black-box optimization,” Evolutionary computation, vol. 28, no. 3, pp. 379–404, 2020.
  15. F. X. Long, D. Vermetten, A. V. Kononova, R. Kalkreuth, K. Yang, T. Bäck, and N. van Stein, “Challenges of ela-guided function evolution using genetic programming,” arXiv preprint arXiv:2305.15245, 2023.
  16. T. Lechien, J. Jooken, and P. De Causmaecker, “Evolving test instances of the hamiltonian completion problem,” Computers & Operations Research, vol. 149, p. 106019, 2023.
  17. J. McDermott, D. R. White, S. Luke, L. Manzoni, M. Castelli, L. Vanneschi, W. Jaskowski, K. Krawiec, R. Harper, K. De Jong, et al., “Genetic programming needs better benchmarks,” in Proceedings of the 14th annual conference on Genetic and evolutionary computation, pp. 791–798, 2012.
  18. A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “First return, then explore,” Nature, vol. 590, no. 7847, pp. 580–586, 2021.
  19. E. Dolson, A. Lalejini, and C. Ofria, “Exploring genetic programming systems with map-elites,” Genetic Programming Theory and Practice XVI, pp. 1–16, 2019.

Summary

We haven't generated a summary for this paper yet.