Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning causal graphs using variable grouping according to ancestral relationship (2403.14125v1)

Published 21 Mar 2024 in stat.ML and cs.LG

Abstract: Several causal discovery algorithms have been proposed. However, when the sample size is small relative to the number of variables, the accuracy of estimating causal graphs using existing methods decreases. And some methods are not feasible when the sample size is smaller than the number of variables. To circumvent these problems, some researchers proposed causal structure learning algorithms using divide-and-conquer approaches. For learning the entire causal graph, the approaches first split variables into several subsets according to the conditional independence relationships among the variables, then apply a conventional causal discovery algorithm to each subset and merge the estimated results. Since the divide-and-conquer approach reduces the number of variables to which a causal structure learning algorithm is applied, it is expected to improve the estimation accuracy of causal graphs, especially when the sample size is small relative to the number of variables and the model is sparse. However, existing methods are either computationally expensive or do not provide sufficient accuracy when the sample size is small. This paper proposes a new algorithm for grouping variables based the ancestral relationships among the variables, under the LiNGAM assumption, where the causal relationships are linear, and the mutually independent noise are distributed as continuous non-Gaussian distributions. We call the proposed algorithm CAG. The time complexity of the ancestor finding in CAG is shown to be cubic to the number of variables. Extensive computer experiments confirm that the proposed method outperforms the original DirectLiNGAM without grouping variables and other divide-and-conquer approaches not only in estimation accuracy but also in computation time when the sample size is small relative to the number of variables and the model is sparse.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. R. Cai, Z. Zhang, and Z. Hao, “Sada: A general framework to support robust causation discovery,” in International conference on machine learning, pp. 208–216, PMLR, 2013.
  2. H. Zhang, S. Zhou, C. Yan, J. Guan, X. Wang, J. Zhang, and J. Huan, “Learning causal structures based on divide and conquer,” IEEE Transactions on Cybernetics, vol. 52, no. 5, pp. 3232–3243, 2020.
  3. S. Shimizu, P. O. Hoyer, A. Hyvärinen, A. Kerminen, and M. Jordan, “A linear non-gaussian acyclic model for causal discovery.,” Journal of Machine Learning Research, vol. 7, no. 10, 2006.
  4. S. Shimizu, T. Inazumi, Y. Sogawa, A. Hyvarinen, Y. Kawahara, T. Washio, P. O. Hoyer, K. Bollen, and P. Hoyer, “Directlingam: A direct method for learning a linear non-gaussian structural equation model,” Journal of Machine Learning Research-JMLR, vol. 12, no. Apr, pp. 1225–1248, 2011.
  5. K. D. Hoover, Causality in economics and econometrics. SSRN eLibrary, 2006.
  6. K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger, and G. P. Nolan, “Causal protein-signaling networks derived from multiparameter single-cell data,” Science, vol. 308, no. 5721, pp. 523–529, 2005.
  7. C. Glymour, “Learning causes: Psychological explanations of causal explanation1,” Minds and machines, vol. 8, no. 1, pp. 39–60, 1998.
  8. Hoboken, New Jersey, U.S.: John Wiley and Sons, 2016.
  9. J. Pearl, “Causal diagrams for empirical research,” Biometrika, vol. 82, no. 4, pp. 669–688, 1995.
  10. MIT press, 2000.
  11. D. M. Chickering, “Optimal structure identification with greedy search,” Journal of machine learning research, vol. 3, no. Nov, pp. 507–554, 2002.
  12. G. Schwarz, “Estimating the dimension of a model,” The Annals of Statistics, pp. 461–464, 1978.
  13. D. M. Chickering, “Learning bayesian networks is np-complete,” Learning from data: Artificial intelligence and statistics V, pp. 121–130, 1996.
  14. D. M. Chickering, D. Heckerman, and C. Meek, “Large-sample learning of bayesian networks is np-hard,” Journal of Machine Learning Research, vol. 5, pp. 1287–1330, 2004.
  15. A. Hyvarinen, J. Karhunen, and E. Oja, “Independent component analysis,” Studies in informatics and control, vol. 11, no. 2, pp. 205–207, 2002.
  16. P. Hoyer, D. Janzing, J. M. Mooij, J. Peters, and B. Schölkopf, “Nonlinear causal discovery with additive noise models,” Advances in neural information processing systems, vol. 21, 2008.
  17. K. Zhang and A. Hyvarinen, “On the identifiability of the post-nonlinear causal model,” arXiv preprint arXiv:1205.2599, 2012.
  18. Y. S. Wang and M. Drton, “High-dimensional causal discovery under non-gaussianity,” Biometrika, vol. 107, no. 1, pp. 41–59, 2020.
  19. T. N. Maeda and S. Shimizu, “Rcd: Repetitive causal discovery of linear non-gaussian acyclic models with latent confounders,” in International Conference on Artificial Intelligence and Statistics, pp. 735–745, PMLR, 2020.
  20. C. J. Kowalski, “On the effects of non-normality on the distribution of the sample product-moment correlation coefficient,” Journal of the Royal Statistical Society: Series C (Applied Statistics), vol. 21, no. 1, pp. 1–12, 1972.
  21. T. N. Maeda and S. Shimizu, “Repetitive causal discovery of linear non-gaussian acyclic models in the presence of latent confounders,” International Journal of Data Science and Analytics, pp. 1–13, 2022.
  22. A. Gretton, K. Fukumizu, C. Teo, L. Song, B. Schölkopf, and A. Smola, “A kernel statistical test of independence,” Advances in neural information processing systems, vol. 20, 2007.
  23. K. Zhang, J. Peters, D. Janzing, and B. Schölkopf, “Kernel-based conditional independence test and application in causal discovery,” arXiv preprint arXiv:1202.3775, 2012.
  24. S. Zhu, I. Ng, and Z. Chen, “Causal discovery with reinforcement learning,” arXiv preprint arXiv:1906.04477, 2019.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com