Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The equational theory of the Weihrauch lattice with multiplication (2403.13975v2)

Published 20 Mar 2024 in cs.LO and math.LO

Abstract: We study the equational theory of the Weihrauch lattice with multiplication, meaning the collection of equations between terms built from variables, the lattice operations $\sqcup$, $\sqcap$, the product $\times$, and the finite parallelization $(-)*$ which are true however we substitute Weihrauch degrees for the variables. We provide a combinatorial description of these in terms of a reducibility between finite graphs, and moreover, show that deciding which equations are true in this sense is complete for the third level of the polynomial hierarchy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. Vasco Brattka & Guido Gherardi (2011): Effective Choice and Boundedness Principles in Computable Analysis. Bulletin of Symbolic Logic 17, pp. 73 – 117, 10.2178/bsl/1294186663. ArXiv:0905.4685.
  2. Vasco Brattka & Guido Gherardi (2011): Weihrauch Degrees, Omniscience Principles and Weak Computability. Journal of Symbolic Logic 76, pp. 143 – 176. ArXiv:0905.4679.
  3. Springer International Publishing, Cham, 10.1007/978-3-030-59234-9_11.
  4. Vasco Brattka & Arno Pauly (2018): On the algebraic structure of Weihrauch degrees. Logical Methods in Computer Science 14(4), 10.23638/LMCS-14(4:4)2018.
  5. Cameron Calk, Anupam Das & Tim Waring (2020): Beyond formulas-as-cographs: an extension of Boolean logic to arbitrary graphs. Available at https://arxiv.org/abs/2004.12941.
  6. D.G. Corneil, H. Lerchs & L.Stewart Burlingham (1981): Complement reducible graphs. Discrete Applied Mathematics 3(3), pp. 163–174, 0166-218X(81)90013-5. Available at https://www.sciencedirect.com/science/article/pii/0166218X81900135.
  7. Damir Dzhafarov (2017): Joins in the strong Weihrauch degrees. arXiv 1704.01494.
  8. Guido Gherardi & Alberto Marcone (2009): How incomputable is the separable Hahn-Banach theorem? Notre Dame Journal of Formal Logic 50(4), pp. 393–425, 10.1215/00294527-2009-018.
  9. Peter Hertling (1996): Unstetigkeitsgrade von Funktionen in der effektiven Analysis. Ph.D. thesis, Fernuniversität, Gesamthochschule in Hagen.
  10. Peter Hertling & Victor Selivanov (2014): Complexity issues for Preorders on finite labeled forests, pp. 165–190. De Gruyter, Berlin, Boston, doi:10.1515/9781614518044.165.
  11. Kojiro Higuchi & Arno Pauly (2013): The degree-structure of Weihrauch-reducibility. Logical Methods in Computer Science 9(2), 10.2168/LMCS-9(2:2)2013.
  12. arXiv : 2311.12676.
  13. Arno Pauly (2010): On the (semi)lattices induced by continuous reducibilities. Mathematical Logic Quarterly 56(5), pp. 488–502, 10.1002/malq.200910104.
Citations (1)

Summary

We haven't generated a summary for this paper yet.