2000 character limit reached
The equational theory of the Weihrauch lattice with multiplication (2403.13975v2)
Published 20 Mar 2024 in cs.LO and math.LO
Abstract: We study the equational theory of the Weihrauch lattice with multiplication, meaning the collection of equations between terms built from variables, the lattice operations $\sqcup$, $\sqcap$, the product $\times$, and the finite parallelization $(-)*$ which are true however we substitute Weihrauch degrees for the variables. We provide a combinatorial description of these in terms of a reducibility between finite graphs, and moreover, show that deciding which equations are true in this sense is complete for the third level of the polynomial hierarchy.
- Vasco Brattka & Guido Gherardi (2011): Effective Choice and Boundedness Principles in Computable Analysis. Bulletin of Symbolic Logic 17, pp. 73 – 117, 10.2178/bsl/1294186663. ArXiv:0905.4685.
- Vasco Brattka & Guido Gherardi (2011): Weihrauch Degrees, Omniscience Principles and Weak Computability. Journal of Symbolic Logic 76, pp. 143 – 176. ArXiv:0905.4679.
- Springer International Publishing, Cham, 10.1007/978-3-030-59234-9_11.
- Vasco Brattka & Arno Pauly (2018): On the algebraic structure of Weihrauch degrees. Logical Methods in Computer Science 14(4), 10.23638/LMCS-14(4:4)2018.
- Cameron Calk, Anupam Das & Tim Waring (2020): Beyond formulas-as-cographs: an extension of Boolean logic to arbitrary graphs. Available at https://arxiv.org/abs/2004.12941.
- D.G. Corneil, H. Lerchs & L.Stewart Burlingham (1981): Complement reducible graphs. Discrete Applied Mathematics 3(3), pp. 163–174, 0166-218X(81)90013-5. Available at https://www.sciencedirect.com/science/article/pii/0166218X81900135.
- Damir Dzhafarov (2017): Joins in the strong Weihrauch degrees. arXiv 1704.01494.
- Guido Gherardi & Alberto Marcone (2009): How incomputable is the separable Hahn-Banach theorem? Notre Dame Journal of Formal Logic 50(4), pp. 393–425, 10.1215/00294527-2009-018.
- Peter Hertling (1996): Unstetigkeitsgrade von Funktionen in der effektiven Analysis. Ph.D. thesis, Fernuniversität, Gesamthochschule in Hagen.
- Peter Hertling & Victor Selivanov (2014): Complexity issues for Preorders on finite labeled forests, pp. 165–190. De Gruyter, Berlin, Boston, doi:10.1515/9781614518044.165.
- Kojiro Higuchi & Arno Pauly (2013): The degree-structure of Weihrauch-reducibility. Logical Methods in Computer Science 9(2), 10.2168/LMCS-9(2:2)2013.
- arXiv : 2311.12676.
- Arno Pauly (2010): On the (semi)lattices induced by continuous reducibilities. Mathematical Logic Quarterly 56(5), pp. 488–502, 10.1002/malq.200910104.