Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Following marginal stability manifolds in quasilinear dynamical reductions of multiscale flows in two space dimensions (2403.13971v1)

Published 20 Mar 2024 in physics.flu-dyn, nlin.AO, and nlin.CD

Abstract: A two-dimensional extension of a recently developed formalism for slow-fast quasilinear (QL) systems subject to fast instabilities is derived. Prior work has demonstrated that the emergent dynamics of these systems is characterized by a slow evolution of mean fields coupled to marginally stable, fast fluctuation fields. By exploiting this emergent behavior, an efficient fast-eigenvalue/slow-initial-value solution algorithm can be developed in which the amplitude of the fast fluctuations is slaved to the slowly evolving mean fields to ensure marginal stability (and temporal scale separation) is maintained. For 2D systems that are spatially-extended in one direction, the fluctuation eigenfunctions are labeled by their wavenumbers characterizing spatial variability in that direction, and the marginal mode(s) also must coincide with the fastest-growing mode(s) over all admissible wavenumbers. Here, we introduce two equivalent procedures for deriving an ordinary differential equation governing the slow evolution of the wavenumber of the fastest-growing fluctuation mode that simultaneously must be slaved to the mean dynamics to ensure the mode has zero growth rate. We illustrate the procedure in the context of a 2D model partial differential equation that shares certain attributes with the equations governing strongly stratified shear flows. The slaved evolution follows one or more marginal stability manifolds, which constitute select state-space structures that are not invariant under the full flow dynamics yet capture quasi-coherent states in physical space in a manner analogous to invariant solutions identified in, e.g., transitionally-turbulent shear flows. Accordingly, we propose that marginal stability manifolds are central organizing structures in a dynamical systems description of certain classes of multiscale flows where scale separation justifies a QL approximation of the dynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. O. Reynolds, Proc. Roy. Soc. Lond. 35 (1883).
  2. H. W. Emmons, Journal of the Aeronautical Sciences 18, 490 (1951).
  3. D. Coles and C. W. V. Atta, Aiaa J. {4}, 1969 (1966).
  4. X. Wu, Annual Review of Fluid Mechanics 55, 45 (2023).
  5. P. Manneville and O. Dauchot, “Patterning and transition to turbulence in subcritical systems: The case of plane couette flow,”  (2001) pp. 58–79.
  6. J. C. McWilliams, Reviews of Geophysics 23, 165 (1985).
  7. E. A. Spiegel and J.-P. Zahn, Astronomy and Astrophysics 265, 106 (1992).
  8. P. Garaud, Annual Review of Fluid Mechanics 50, 275 (2018).
  9. J.-R. Alisse and C. Sidi, Journal of Fluid Mechanics 402, 137 (2000).
  10. K. Julien and E. Knobloch, Journal of Mathematical Physics 48, 065405 (2007).
  11. P. Billant and J.-M. Chomaz, Physics of Fluids 13, 1645 (2001).
  12. M. C. Gregg, Journal of Geophysical Research: Oceans 92, 5249 (1987).
  13. J. G. Fitzgerald and B. F. Farrell, Journal of Fluid Mechanics 854, 544 (2018).
  14. J. G. Fitzgerald and B. F. Farrell, Journal of Fluid Mechanics 864, R3 (2019).
  15. R. Ferrari and C. Wunsch, Annual Review of Fluid Mechanics 41, 253 (2009).
  16. B. J. McKeon, Journal of Fluid Mechanics 817, P1 (2017).
  17. A. S. Sharma and B. J. McKeon, Journal of Fluid Mechanics 728, 196 (2013).
  18. B. McKeon, California Institute of Technology  (2023).
  19. C. W. Rowley and S. T. Dawson, Annual Review of Fluid Mechanics 49, 387 (2017).
  20. P. J. Schmid, Annual Review of Fluid Mechanics 39, 129 (2007).
  21. P. J. Schmid, Annual Review of Fluid Mechanics 54, 225 (2022).
  22. M. D. Graham and D. Floryan, Annual Review of Fluid Mechanics 53, 227 (2021).
  23. M. Nagata, Journal of Fluid Mechanics 217, 519 (1990).
  24. R. R. Kerswell, Nonlinearity 18, R17 (2005).
  25. P. Cvitanović, Journal of Fluid Mechanics 726, 1 (2013).
  26. G. J. Chandler and R. R. Kerswell, Journal of Fluid Mechanics 722, 554 (2013).
  27. F. Waleffe, Physical Review Letters 81, 4140 (1998).
  28. F. Waleffe, Journal of Fluid Mechanics 435, 93 (2001).
  29. G. Kawahara and S. Kida, Journal of Fluid Mechanics 449, 291 (2001).
  30. F. Waleffe, Physics of Fluids 15, 1517 (2003), lowest Reynolds number for Nagata.
  31. J. S. Park and M. D. Graham, Journal of Fluid Mechanics 782, 430 (2015).
  32. J. F. Gibson and T. M. Schneider, Journal of Fluid Mechanics 794, 530 (2016).
  33. J. F. Gibson and E. Brand, Journal of Fluid Mechanics 745, 25 (2014), windowing.
  34. F. Reetz and T. M. Schneider, under revision at PRF  (2020a).
  35. H. Faisst and B. Eckhardt, Physical Review Letters 91, 224502 (2003).
  36. H. Wedin and R. R. Kerswell, Journal of Fluid Mechanics 508, 333 (2004).
  37. B. Hof, Science 305, 1594 (2004).
  38. F. Reetz and T. M. Schneider, Journal of Fluid Mechanics 898, A22 (2020b).
  39. S. Azimi and T. M. Schneider, Journal of Fluid Mechanics 888, A15 (2020).
  40. G. Michel and G. P. Chini, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences vol. 475 (2019).
  41. J. R. Herring, Journal of the Atmospheric Sciences 20, 325 (1963).
  42. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers I (Springer New York, 1999).
  43. E. J. Hinch, Perturbation Methods (Cambridge University Press, 1991).
  44. C. Caulfield, Annual Review of Fluid Mechanics 53, 113 (2021).
  45. A. Ferraro, Exploiting Marginal Stability in Slow-Fast Quasilinear Dynamical Systems, Ph.D. thesis, EPFL (2022).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com