Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safety-Aware Perception for Autonomous Collision Avoidance in Dynamic Environments (2403.13929v1)

Published 20 Mar 2024 in cs.RO, cs.SY, and eess.SY

Abstract: Autonomous collision avoidance requires accurate environmental perception; however, flight systems often possess limited sensing capabilities with field-of-view (FOV) restrictions. To navigate this challenge, we present a safety-aware approach for online determination of the optimal sensor-pointing direction $\psi_\text{d}$ which utilizes control barrier functions (CBFs). First, we generate a spatial density function $\Phi$ which leverages CBF constraints to map the collision risk of all local coordinates. Then, we convolve $\Phi$ with an attitude-dependent sensor FOV quality function to produce the objective function $\Gamma$ which quantifies the total observed risk for a given pointing direction. Finally, by finding the global optimizer for $\Gamma$, we identify the value of $\psi_\text{d}$ which maximizes the perception of risk within the FOV. We incorporate $\psi_\text{d}$ into a safety-critical flight architecture and conduct a numerical analysis using multiple simulated mission profiles. Our algorithm achieves a success rate of $88-96\%$, constituting a $16-29\%$ improvement compared to the best heuristic methods. We demonstrate the functionality of our approach via a flight demonstration using the Crazyflie 2.1 micro-quadrotor. Without a priori obstacle knowledge, the quadrotor follows a dynamic flight path while simultaneously calculating and tracking $\psi_\text{d}$ to perceive and avoid two static obstacles with an average computation time of 371 $\mu$s.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs with application to adaptive cruise control,” in Proc. 53rd IEEE Conf. Decis. Control, 2014, pp. 6271–6278.
  2. A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 3861–3876, 2017.
  3. Q. Nguyen and K. Sreenath, “Exponential control barrier functions for enforcing high relative-degree safety-critical constraints,” in Proc. Am. Control Conf. (ACC), 2016, pp. 322–328.
  4. G. Wu and K. Sreenath, “Safety-critical control of a planar quadrotor,” in Proc. Am. Control Conf. (ACC), 2016, pp. 2252–2258.
  5. ——, “Safety-critical control of a 3d quadrotor with range-limited sensing,” in Proc. Dyn. Syst. Control Conf., Oct 2016.
  6. L. Doeser, P. Nilsson, A. D. Ames, and R. M. Murray, “Invariant sets for integrators and quadrotor obstacle avoidance,” in Proc. Am. Control Conf. (ACC), 2020, pp. 3814–3821.
  7. B. Xu and K. Sreenath, “Safe teleoperation of dynamic uavs through control barrier functions,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2018, pp. 7848–7855.
  8. V. Freire and X. Xu, “Flatness-based quadcopter trajectory planning and tracking with continuous-time safety guarantees,” arXiv, 2021.
  9. L. Wang, A. D. Ames, and M. Egerstedt, “Safe certificate-based maneuvers for teams of quadrotors using differential flatness,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2017, pp. 3293–3298.
  10. N. Hübel, S. Hirche, A. Gusrialdi, T. Hatanaka, M. Fujita, and O. Sawodny, “Coverage control with information decay in dynamic environments,” in Proc. 17th IFAC World Congress, vol. 41, no. 2, 2008, pp. 4180–4185.
  11. K. K. Reddy and N. Conci, “Camera positioning for global and local coverage optimization,” in Proc. 6th Int. Conf. Distrib. Smart Cameras (ICDSC), 2012, pp. 1–6.
  12. M. Forstenhaeusler, R. Funada, T. Hatanaka, and M. Fujita, “Experimental study of gradient-based visual coverage control on so(3) toward moving object/human monitoring,” in Proc. Am. Control Conf. (ACC), 2015, pp. 2125–2130.
  13. O. Arslan, H. Min, and D. E. Koditschek, “Voronoi-based coverage control of pan/tilt/zoom camera networks,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2018, pp. 5062–5069.
  14. L. Paull, C. Thibault, A. Nagaty, M. Seto, and H. Li, “Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle,” IEEE Trans. Cybern., vol. 44, no. 9, pp. 1605–1618, 2014.
  15. R. Mebarki, V. Lippiello, and B. Siciliano, “Nonlinear visual control of unmanned aerial vehicles in gps-denied environments,” IEEE Trans. Robot., vol. 31, no. 4, pp. 1004–1017, 2015.
  16. R. Funada, M. Santos, J. Yamauchi, T. Hatanaka, M. Fujita, and M. Egerstedt, “Visual coverage control for teams of quadcopters via control barrier functions,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2019, pp. 3010–3016.
  17. A. Renzaglia, J. Dibangoye, V. Le Doze, and O. Simonin, “A common optimization framework for multi-robot exploration and coverage in 3d environments,” J. Intell. Robot. Syst., vol. 100, no. 3, pp. 1453–1468, 2020.
  18. H. Dan, T. Hatanaka, J. Yamauchi, T. Shimizu, and M. Fujita, “Persistent object search and surveillance control with safety certificates for drone networks based on control barrier functions,” Front. Robot. AI, vol. 8, 2021.
  19. K. Zhang, Y. Shi, and H. Sheng, “Robust nonlinear model predictive control based visual servoing of quadrotor uavs,” IEEE/ASME Trans. Mechatron., vol. 26, no. 2, pp. 700–708, 2021.
  20. M. N. Finean, W. Merkt, and I. Havoutis, “Where should i look? optimized gaze control for whole-body collision avoidance in dynamic environments,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 1095–1102, 2022.
  21. H. Ryu, M. Yoon, D. Park, and S.-E. Yoon, “Confidence-based robot navigation under sensor occlusion with deep reinforcement learning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2022, pp. 8231–8237.
  22. V. Murali, I. Spasojevic, W. Guerra, and S. Karaman, “Perception-aware trajectory generation for aggressive quadrotor flight using differential flatness,” in Proc. Am. Control Conf. (ACC), 2019, pp. 3936–3943.
  23. I. Spasojevic, V. Murali, and S. Karaman, “Perception-aware time optimal path parameterization for quadrotors,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2020, pp. 3213–3219.
  24. Y. Li, G. Lu, D. He, and F. Zhang, “Robocentric model-based visual servoing for quadrotor flights,” IEEE/ASME Trans. Mechatron., pp. 1–12, 2023.
  25. B. Penin, P. R. Giordano, and F. Chaumette, “Vision-based reactive planning for aggressive target tracking while avoiding collisions and occlusions,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 3725–3732, 2018.
  26. H. Sheng, E. Shi, and K. Zhang, “Image-based visual servoing of a quadrotor with improved visibility using model predictive control,” in Proc. IEEE 28th Int. Symp. Ind. Electron (ISIE), 2019, pp. 551–556.
  27. Y. Liu, Z. Meng, Y. Zou, and M. Cao, “Visual object tracking and servoing control of a nano-scale quadrotor: System, algorithms, and experiments,” IEEE/CAA J. Autom. Sin., vol. 8, no. 2, pp. 344–360, 2021.
  28. C. Qin, Q. Yu, H. S. H. Go, and H. H.-T. Liu, “Perception-aware image-based visual servoing of aggressive quadrotor uavs,” IEEE/ASME Trans. Mechatron., pp. 1–9, 2023.
  29. E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, and D. Scaramuzza, “Champion-level drone racing using deep reinforcement learning,” Nature, vol. 620, pp. 982–987, 2023.
  30. J. Chen, T. Liu, and S. Shen, “Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2016, pp. 1476–1483.
  31. F. Kong, W. Xu, Y. Cai, and F. Zhang, “Avoiding dynamic small obstacles with onboard sensing and computation on aerial robots,” IEEE Robot. Autom. Lett., vol. 6, no. 4, pp. 7869–7876, 2021.
  32. J. Tordesillas and J. P. How, “Panther: Perception-aware trajectory planner in dynamic environments,” IEEE Access, vol. 10, pp. 22 662–22 677, 2022.
  33. ——, “Deep-panther: Learning-based perception-aware trajectory planner in dynamic environments,” IEEE Robot. Autom. Lett., vol. 8, no. 3, pp. 1399–1406, 2023.
  34. G. Chen, W. Dong, X. Sheng, X. Zhu, and H. Ding, “An active sense and avoid system for flying robots in dynamic environments,” IEEE/ASME Trans. Mechatron., 2021.
  35. R. M. Bena, X.-T. Nguyen, X. Yang, A. A. Calderon, Y. Chen, and N. O. Pérez-Arancibia, “A multiplatform position control scheme for flying robotic insects,” J. Intell. Robot. Syst., vol. 105, no. 1, p. 19, 2022.
  36. R. M. Bena, X. Yang, , A. A. Calderón, , and N. O. Pérez-Arancibia, “High-performance six-dof flight control of the bee++absent{}^{++}start_FLOATSUPERSCRIPT + + end_FLOATSUPERSCRIPT: An inclined-stroke-plane approach,” IEEE Trans. Robot., vol. 39, no. 2, pp. 1668–1684, 2023.
  37. A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and applications,” in Proc. 18th Eur. Control Conf. (ECC), 2019, pp. 3420–3431.
  38. A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly exponentially stabilizing control lyapunov functions and hybrid zero dynamics,” IEEE Trans. Autom. Control, vol. 59, no. 4, pp. 876–891, 2014.
  39. M. Krogius, A. Haggenmiller, and E. Olson, “Flexible layouts for fiducial tags,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2019.
Citations (9)

Summary

We haven't generated a summary for this paper yet.