Safety-Aware Perception for Autonomous Collision Avoidance in Dynamic Environments (2403.13929v1)
Abstract: Autonomous collision avoidance requires accurate environmental perception; however, flight systems often possess limited sensing capabilities with field-of-view (FOV) restrictions. To navigate this challenge, we present a safety-aware approach for online determination of the optimal sensor-pointing direction $\psi_\text{d}$ which utilizes control barrier functions (CBFs). First, we generate a spatial density function $\Phi$ which leverages CBF constraints to map the collision risk of all local coordinates. Then, we convolve $\Phi$ with an attitude-dependent sensor FOV quality function to produce the objective function $\Gamma$ which quantifies the total observed risk for a given pointing direction. Finally, by finding the global optimizer for $\Gamma$, we identify the value of $\psi_\text{d}$ which maximizes the perception of risk within the FOV. We incorporate $\psi_\text{d}$ into a safety-critical flight architecture and conduct a numerical analysis using multiple simulated mission profiles. Our algorithm achieves a success rate of $88-96\%$, constituting a $16-29\%$ improvement compared to the best heuristic methods. We demonstrate the functionality of our approach via a flight demonstration using the Crazyflie 2.1 micro-quadrotor. Without a priori obstacle knowledge, the quadrotor follows a dynamic flight path while simultaneously calculating and tracking $\psi_\text{d}$ to perceive and avoid two static obstacles with an average computation time of 371 $\mu$s.
- A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs with application to adaptive cruise control,” in Proc. 53rd IEEE Conf. Decis. Control, 2014, pp. 6271–6278.
- A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 3861–3876, 2017.
- Q. Nguyen and K. Sreenath, “Exponential control barrier functions for enforcing high relative-degree safety-critical constraints,” in Proc. Am. Control Conf. (ACC), 2016, pp. 322–328.
- G. Wu and K. Sreenath, “Safety-critical control of a planar quadrotor,” in Proc. Am. Control Conf. (ACC), 2016, pp. 2252–2258.
- ——, “Safety-critical control of a 3d quadrotor with range-limited sensing,” in Proc. Dyn. Syst. Control Conf., Oct 2016.
- L. Doeser, P. Nilsson, A. D. Ames, and R. M. Murray, “Invariant sets for integrators and quadrotor obstacle avoidance,” in Proc. Am. Control Conf. (ACC), 2020, pp. 3814–3821.
- B. Xu and K. Sreenath, “Safe teleoperation of dynamic uavs through control barrier functions,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2018, pp. 7848–7855.
- V. Freire and X. Xu, “Flatness-based quadcopter trajectory planning and tracking with continuous-time safety guarantees,” arXiv, 2021.
- L. Wang, A. D. Ames, and M. Egerstedt, “Safe certificate-based maneuvers for teams of quadrotors using differential flatness,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2017, pp. 3293–3298.
- N. Hübel, S. Hirche, A. Gusrialdi, T. Hatanaka, M. Fujita, and O. Sawodny, “Coverage control with information decay in dynamic environments,” in Proc. 17th IFAC World Congress, vol. 41, no. 2, 2008, pp. 4180–4185.
- K. K. Reddy and N. Conci, “Camera positioning for global and local coverage optimization,” in Proc. 6th Int. Conf. Distrib. Smart Cameras (ICDSC), 2012, pp. 1–6.
- M. Forstenhaeusler, R. Funada, T. Hatanaka, and M. Fujita, “Experimental study of gradient-based visual coverage control on so(3) toward moving object/human monitoring,” in Proc. Am. Control Conf. (ACC), 2015, pp. 2125–2130.
- O. Arslan, H. Min, and D. E. Koditschek, “Voronoi-based coverage control of pan/tilt/zoom camera networks,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2018, pp. 5062–5069.
- L. Paull, C. Thibault, A. Nagaty, M. Seto, and H. Li, “Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle,” IEEE Trans. Cybern., vol. 44, no. 9, pp. 1605–1618, 2014.
- R. Mebarki, V. Lippiello, and B. Siciliano, “Nonlinear visual control of unmanned aerial vehicles in gps-denied environments,” IEEE Trans. Robot., vol. 31, no. 4, pp. 1004–1017, 2015.
- R. Funada, M. Santos, J. Yamauchi, T. Hatanaka, M. Fujita, and M. Egerstedt, “Visual coverage control for teams of quadcopters via control barrier functions,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2019, pp. 3010–3016.
- A. Renzaglia, J. Dibangoye, V. Le Doze, and O. Simonin, “A common optimization framework for multi-robot exploration and coverage in 3d environments,” J. Intell. Robot. Syst., vol. 100, no. 3, pp. 1453–1468, 2020.
- H. Dan, T. Hatanaka, J. Yamauchi, T. Shimizu, and M. Fujita, “Persistent object search and surveillance control with safety certificates for drone networks based on control barrier functions,” Front. Robot. AI, vol. 8, 2021.
- K. Zhang, Y. Shi, and H. Sheng, “Robust nonlinear model predictive control based visual servoing of quadrotor uavs,” IEEE/ASME Trans. Mechatron., vol. 26, no. 2, pp. 700–708, 2021.
- M. N. Finean, W. Merkt, and I. Havoutis, “Where should i look? optimized gaze control for whole-body collision avoidance in dynamic environments,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 1095–1102, 2022.
- H. Ryu, M. Yoon, D. Park, and S.-E. Yoon, “Confidence-based robot navigation under sensor occlusion with deep reinforcement learning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2022, pp. 8231–8237.
- V. Murali, I. Spasojevic, W. Guerra, and S. Karaman, “Perception-aware trajectory generation for aggressive quadrotor flight using differential flatness,” in Proc. Am. Control Conf. (ACC), 2019, pp. 3936–3943.
- I. Spasojevic, V. Murali, and S. Karaman, “Perception-aware time optimal path parameterization for quadrotors,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2020, pp. 3213–3219.
- Y. Li, G. Lu, D. He, and F. Zhang, “Robocentric model-based visual servoing for quadrotor flights,” IEEE/ASME Trans. Mechatron., pp. 1–12, 2023.
- B. Penin, P. R. Giordano, and F. Chaumette, “Vision-based reactive planning for aggressive target tracking while avoiding collisions and occlusions,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 3725–3732, 2018.
- H. Sheng, E. Shi, and K. Zhang, “Image-based visual servoing of a quadrotor with improved visibility using model predictive control,” in Proc. IEEE 28th Int. Symp. Ind. Electron (ISIE), 2019, pp. 551–556.
- Y. Liu, Z. Meng, Y. Zou, and M. Cao, “Visual object tracking and servoing control of a nano-scale quadrotor: System, algorithms, and experiments,” IEEE/CAA J. Autom. Sin., vol. 8, no. 2, pp. 344–360, 2021.
- C. Qin, Q. Yu, H. S. H. Go, and H. H.-T. Liu, “Perception-aware image-based visual servoing of aggressive quadrotor uavs,” IEEE/ASME Trans. Mechatron., pp. 1–9, 2023.
- E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, and D. Scaramuzza, “Champion-level drone racing using deep reinforcement learning,” Nature, vol. 620, pp. 982–987, 2023.
- J. Chen, T. Liu, and S. Shen, “Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2016, pp. 1476–1483.
- F. Kong, W. Xu, Y. Cai, and F. Zhang, “Avoiding dynamic small obstacles with onboard sensing and computation on aerial robots,” IEEE Robot. Autom. Lett., vol. 6, no. 4, pp. 7869–7876, 2021.
- J. Tordesillas and J. P. How, “Panther: Perception-aware trajectory planner in dynamic environments,” IEEE Access, vol. 10, pp. 22 662–22 677, 2022.
- ——, “Deep-panther: Learning-based perception-aware trajectory planner in dynamic environments,” IEEE Robot. Autom. Lett., vol. 8, no. 3, pp. 1399–1406, 2023.
- G. Chen, W. Dong, X. Sheng, X. Zhu, and H. Ding, “An active sense and avoid system for flying robots in dynamic environments,” IEEE/ASME Trans. Mechatron., 2021.
- R. M. Bena, X.-T. Nguyen, X. Yang, A. A. Calderon, Y. Chen, and N. O. Pérez-Arancibia, “A multiplatform position control scheme for flying robotic insects,” J. Intell. Robot. Syst., vol. 105, no. 1, p. 19, 2022.
- R. M. Bena, X. Yang, , A. A. Calderón, , and N. O. Pérez-Arancibia, “High-performance six-dof flight control of the bee++absent{}^{++}start_FLOATSUPERSCRIPT + + end_FLOATSUPERSCRIPT: An inclined-stroke-plane approach,” IEEE Trans. Robot., vol. 39, no. 2, pp. 1668–1684, 2023.
- A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and applications,” in Proc. 18th Eur. Control Conf. (ECC), 2019, pp. 3420–3431.
- A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly exponentially stabilizing control lyapunov functions and hybrid zero dynamics,” IEEE Trans. Autom. Control, vol. 59, no. 4, pp. 876–891, 2014.
- M. Krogius, A. Haggenmiller, and E. Olson, “Flexible layouts for fiducial tags,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2019.