Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Motion Prediction of Multi-agent systems with Multi-view clustering (2403.13905v1)

Published 20 Mar 2024 in cs.MA

Abstract: This paper presents a method for future motion prediction of multi-agent systems by including group formation information and future intent. Formation of groups depends on a physics-based clustering method that follows the agglomerative hierarchical clustering algorithm. We identify clusters that incorporate the minimum cost-to-go function of a relevant optimal control problem as a metric for clustering between the groups among agents, where groups with similar associated costs are assumed to be likely to move together. The cost metric accounts for proximity to other agents as well as the intended goal of each agent. An unscented Kalman filter based approach is used to update the established clusters as well as add new clusters when new information is obtained. Our approach is verified through non-trivial numerical simulations implementing the proposed algorithm on different datasets pertaining to a variety of scenarios and agents.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. N. Deo, A. Rangesh, and M. M. Trivedi, “How Would Surround Vehicles Move? A Unified Framework for Maneuver Classification and Motion Prediction,” IEEE Transactions on Intelligent Vehicles, vol. 3, no. 2, pp. 129–140, 2018.
  2. H. Peng, A. Razi, F. Afghah, and J. Ashdown, “A unified framework for joint mobility prediction and object profiling of drones in UAV networks,” Journal of Communications and Networks, vol. 20, no. 5, pp. 434–442, 2018.
  3. R. Sharma and D. Ghose, “Collision Avoidance Between UAV Clusters using Swarm Intelligence Techniques,” International Journal of Systems Science, vol. 40, no. 5, pp. 521–538, 2009.
  4. J. Mainprice and D. Berenson, “Human-robot Collaborative Manipulation Planning using Early Prediction of Human Motion,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 299–306, 2013.
  5. M. Luber and K. O. Arras, “Multi-Hypothesis Social Grouping and Tracking for Mobile Robots.,” in Robotics: Science and Systems, 2013.
  6. A. Gorrini, S. Bandini, and G. Vizzari, “Empirical Investigation on Pedestrian Crowd Dynamics and Grouping,” in Traffic and granular flow’13, pp. 83–91, Springer, 2015.
  7. G. Vizzari, L. Manenti, and L. Crociani, “Adaptive Pedestrian Behaviour for the Preservation of Group Cohesion,” Complex Adaptive Systems Modeling, vol. 1, no. 1, pp. 1–29, 2013.
  8. Q. Wang, M. Chen, F. Nie, and X. Li, “Detecting Coherent Groups in Crowd Scenes by Multiview Clustering,” IEEE transactions on pattern analysis and machine intelligence, vol. 42, no. 1, pp. 46–58, 2018.
  9. L. Cheng, R. Yarlagadda, C. Fookes, and P. Yarlagadda, “A Review of Pedestrian Group Dynamics and Methodologies in Modelling Pedestrian Group Behaviours,” World Journal of Mechanical Engineering, vol. 1, no. 1, pp. 1–13, 2014.
  10. D. B. Nguyen, L. Zhang, R. S. Laramee, D. Thompson, R. O. Monico, and G. Chen, “Physics-Based Pathline Clustering and Exploration,” in Computer Graphics Forum, vol. 40, pp. 22–37, Wiley Online Library, 2021.
  11. J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory Clustering: A Partition-and-Group Framework,” in Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 593–604, 2007.
  12. S. Shuming, Y. Guangwen, W. Dingxing, and Z. Weimin, “Potential-Based Hierarchical Clustering,” in 2002 International Conference on Pattern Recognition, vol. 4, pp. 272–275, IEEE, 2002.
  13. H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek, “Density-based Clustering,” Wiley interdisciplinary reviews: data mining and knowledge discovery, vol. 1, no. 3, pp. 231–240, 2011.
  14. S. F. Hussain, M. Mushtaq, and Z. Halim, “Multi-View Document Clustering via Ensemble Method,” Journal of Intelligent Information Systems, vol. 43, no. 1, pp. 81–99, 2014.
  15. Y. Yang and H. Wang, “Multi-View Clustering: A Survey,” Big Data Mining and Analytics, vol. 1, no. 2, pp. 83–107, 2018.
  16. S. Bickel and T. Scheffer, “Multi-View Clustering.,” in ICDM, vol. 4, pp. 19–26, 2004.
  17. A. S. Stordal, H. A. Karlsen, G. Nævdal, H. J. Skaug, and B. Vallès, “Bridging the Ensemble Kalman Filter and Particle Filters: The Adaptive Gaussian Mixture Filter,” Computational Geosciences, vol. 15, no. 2, pp. 293–305, 2011.
  18. J. H. Kotecha and P. M. Djuric, “Gaussian Sum Particle Filtering,” IEEE Transactions on Signal Processing, vol. 51, no. 10, pp. 2602–2612, 2003.
  19. G. Terejanu, P. Singla, T. Singh, and P. D. Scott, “Adaptive Gaussian Sum Filter For Nonlinear Bayesian Estimation,” IEEE Transactions on Automatic Control, vol. 56, no. 9, pp. 2151–2156, 2011.
  20. D. Guo, X. Wang, and R. Chen, “Multilevel Mixture Kalman Filter,” EURASIP Journal on Advances in Signal Processing, vol. 2004, no. 15, pp. 1–12, 2004.
  21. A. G. Wills, J. Hendriks, C. Renton, and B. Ninness, “A Bayesian Filtering Algorithm for Gaussian Mixture Models,” 2017.
  22. D. Raihan and S. Chakravorty, “Particle Gaussian Mixture Filters-i,” Automatica, vol. 98, pp. 331–340, 2018.
  23. D. Raihan and S. Chakravorty, “Particle Gaussian Mixture Filters-ii,” Automatica, vol. 98, pp. 341–349, 2018.
  24. E. A. Wan and R. Van Der Merwe, “The Unscented Kalman Filter for Nonlinear Estimation,” in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373), pp. 153–158, Ieee, 2000.
  25. F. Faubel, J. McDonough, and D. Klakow, “The Split and Merge Unscented Gaussian Mixture Filter,” IEEE Signal Processing Letters, vol. 16, no. 9, pp. 786–789, 2009.
  26. M. B. Khalkhali, A. Vahedian, and H. S. Yazdi, “Multi-target State Estimation Using Interactive Kalman Filter For Multi-Vehicle Tracking,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 3, pp. 1131–1144, 2019.
  27. J. Schulz, C. Hubmann, J. Löchner, and D. Burschka, “Multiple Model Unscented Kalman Filtering in Dynamic Bayesian Networks for Intention Estimation and Trajectory Prediction,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 1467–1474, IEEE, 2018.
  28. A. James and E. Bakolas, “Gaussian Mixture Based Motion Prediction for Cluster Groups of Mobile Agents,” IFAC-PapersOnLine, vol. 55, no. 37, pp. 408–413, 2022. 2nd Modeling, Estimation and Control Conference MECC 2022.
  29. D. Helbing and P. Molnar, “Social Force Model for Pedestrian Dynamics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.
  30. Cambridge university press, 2023.
  31. E. Bakolas and Y. Lee, “Decentralized Game-Theoretic Control for Dynamic Task Allocation Problems for Multi-Agent Systems,” in 2021 American Control Conference (ACC), pp. 3228–3233, IEEE, 2021.
  32. P. Kothari, S. Kreiss, and A. Alahi, “Human Trajectory Forecasting in Crowds: A Deep Learning Perspective,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–15, 2021.
  33. B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal, B. Pan, R. Kumar, A. Hartnett, J. K. Pontes, D. Ramanan, P. Carr, and J. Hays, “Argoverse 2: Next Generation Datasets for Self-driving Perception and Forecasting,” in Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS Datasets and Benchmarks 2021), 2021.
  34. J. Lambert and J. Hays, “Trust, but verify: Cross-modality fusion for hd map change detection,” in Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS Datasets and Benchmarks 2021), 2021.

Summary

We haven't generated a summary for this paper yet.