Quantum simulation of time-dependent Hamiltonians via commutator-free quasi-Magnus operators (2403.13889v3)
Abstract: Hamiltonian simulation is arguably the most fundamental application of quantum computers. The Magnus operator is a popular method for time-dependent Hamiltonian simulation in computational mathematics, yet its usage requires the implementation of exponentials of commutators, which has previously made it unappealing for quantum computing. The development of commutator-free quasi-Magnus operators (CFQMs) circumvents this obstacle, at the expense of a lack of provable global numeric error bounds. In this work, we establish one such error bound for CFQM-based time-dependent quantum Hamiltonian simulation by carefully estimating the error of each step involved in their definition. This allows us to compare its cost with the alternatives, and show that CFQMs are often the most efficient product-formula technique available by more than an order of magnitude. As a result, we find that CFQMs may be particularly useful to simulate time-dependent Hamiltonians on early fault-tolerant quantum computers.
- S. Pang and A. N. Jordan, Optimal adaptive control for quantum metrology with time-dependent Hamiltonians, Nature communications 8, 14695 (2017).
- A. Alvermann, H. Fehske, and P. Littlewood, Numerical time propagation of quantum systems in radiation fields, New Journal of Physics 14, 105008 (2012).
- J. J. Goings, P. J. Lestrange, and X. Li, Real-time time-dependent electronic structure theory, Wiley Interdisciplinary Reviews: Computational Molecular Science 8, e1341 (2018).
- A. M. Childs and N. Wiebe, Hamiltonian simulation using linear combinations of unitary operations, Quantum Information and Computation 12, 901–924 (2012a).
- G. H. Low and N. Wiebe, Hamiltonian simulation in the interaction picture, arXiv preprint arXiv:1805.00675 (2018).
- M. Kieferová, A. Scherer, and D. W. Berry, Simulating the dynamics of time-dependent Hamiltonians with a truncated Dyson series, Physical Review A 99, 042314 (2019).
- W. Magnus, On the exponential solution of differential equations for a linear operator, Communications on pure and applied mathematics 7, 649 (1954).
- H. Ribeiro, A. Baksic, and A. A. Clerk, Systematic magnus-based approach for suppressing leakage and nonadiabatic errors in quantum dynamics, Physical Review X 7, 011021 (2017).
- A. M. Childs and N. Wiebe, Product formulas for exponentials of commutators, Journal of Mathematical Physics 54 (2013).
- S. Blanes and P. C. Moan, Fourth-and sixth-order commutator-free Magnus integrators for linear and non-linear dynamical systems, Applied Numerical Mathematics 56, 1519 (2006).
- A. Alvermann and H. Fehske, High-order commutator-free exponential time-propagation of driven quantum systems, Journal of Computational Physics 230, 5930 (2011).
- S. Blanes, F. Casas, and M. Thalhammer, High-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations, Computer Physics Communications 220, 243 (2017).
- A. M. Childs and Y. Su, Nearly optimal lattice simulation by product formulas, Physical Review Letters 123, 050503 (2019).
- P. Bader, S. Blanes, and N. Kopylov, Exponential propagators for the Schrödinger equation with a time-dependent potential, The Journal of Chemical Physics 148 (2018).
- A. Iserles, K. Kropielnicka, and P. Singh, Magnus-Lanczos methods with simplified commutators for the Schrodinger equation with a time-dependent potential, SIAM Journal on Numerical Analysis 56, 1547 (2018).
- E. Celledoni and A. Iserles, Approximating the exponential from a lie algebra to a lie group, Mathematics of Computation 69, 1457 (2000).
- K. Kormann, S. Holmgren, and H. O. Karlsson, Accurate time propagation for the Schrödinger equation with an explicitly time-dependent Hamiltonian, The Journal of Chemical Physics 128 (2008).
- K. Kormann, S. Holmgren, and H. O. Karlsson, Global error control of the time-propagation for the Schrödinger equation with a time-dependent Hamiltonian, Journal of Computational Science 2, 178 (2011).
- W. Auzinger, H. Hofstätter, and O. Koch, Symmetrized local error estimators for time-reversible one-step methods in nonlinear evolution equations, Journal of Computational and Applied Mathematics 356, 339 (2019b).
- T. N. Ikeda and K. Fujii, Trotter24: A precision-guaranteed adaptive stepsize trotterization for Hamiltonian simulations, arXiv preprint arXiv:2307.05406 (2023).
- G. H. Low, V. Kliuchnikov, and N. Wiebe, Well-conditioned multiproduct Hamiltonian simulation, arXiv preprint arXiv:1907.11679 (2019).
- P. Moan and J. Oteo, Convergence of the exponential Lie series, Journal of Mathematical Physics 42, 501 (2001).
- H. Munthe-Kaas and B. Owren, Computations in a free Lie algebra, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, 957 (1999).
- S. Blanes, F. Casas, and J. Ros, Improved high order integrators based on the Magnus expansion, BIT Numerical Mathematics 40, 434 (2000).
- A. Iserles and S. P. Nørsett, On the solution of linear differential equations in lie groups, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, 983 (1999).
- B. Mielnik and J. Plebański, Combinatorial approach to Baker-Campbell-Hausdorff exponents, in Annales de l’institut Henri Poincaré. Section A, Physique Théorique, Vol. 12 (1970) pp. 215–254.
- F. Motzoi, M. P. Kaicher, and F. K. Wilhelm, Linear and logarithmic time compositions of quantum many-body operators, Physical Review Letters 119, 160503 (2017).
- S. Blanes and F. Casas, Splitting methods for non-autonomous separable dynamical systems, Journal of Physics A: Mathematical and General 39, 5405 (2006).
- M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and monte carlo simulations, Physics Letters A 146, 319 (1990).
- M. Suzuki, General theory of fractal path integrals with applications to many-body theories and statistical physics, Journal of Mathematical Physics 32, 400 (1991).
- M. Suzuki, General decomposition theory of ordered exponentials, Proceedings of the Japan Academy, Series B 69, 161 (1993).
- E. Campbell, Random compiler for fast Hamiltonian simulation, Physical Review Letters 123, 070503 (2019).
- A. M. Childs and N. Wiebe, Hamiltonian Simulation Using Linear Combinations of Unitary Operations, Quantum Information and Computation 12, 0901 (2012b), arXiv:1202.5822 [quant-ph] .
- S. Blanes, F. Casas, and J. Ros, Extrapolation of symplectic integrators, Celestial Mechanics and Dynamical Astronomy 75, 149 (1999).
- S. Blanes and F. Casas, Raising the order of geometric numerical integrators by composition and extrapolation, Numerical Algorithms 38, 305 (2005).
- S. A. Chin, Multi-product splitting and Runge-Kutta-Nyström integrators, Celestial Mechanics and Dynamical Astronomy 106, 391 (2010).
- M. Hochbruck and C. Lubich, On magnus integrators for time-dependent Schrödinger equations, SIAM journal on numerical analysis 41, 945 (2003).
- P. Singh, High accuracy computational methods for the semiclassical Schrödinger equation, Ph.D. thesis, University of Cambridge (2018).
- S. Blanes, F. Casas, and M. Thalhammer, Convergence analysis of high-order commutator-free quasi-magnus exponential integrators for nonautonomous linear evolution equations of parabolic type, IMA Journal of Numerical Analysis 38, 743 (2018).
- D. An, D. Fang, and L. Lin, Time-dependent unbounded Hamiltonian simulation with vector norm scaling, Quantum 5, 459 (2021).
- D. W. Berry, High-order quantum algorithm for solving linear differential equations, Journal of Physics A: Mathematical and Theoretical 47, 105301 (2014).
- A. M. Childs and J.-P. Liu, Quantum spectral methods for differential equations, Communications in Mathematical Physics 375, 1427 (2020).
- Y. Cao, S. Jin, and N. Liu, Quantum simulation for time-dependent Hamiltonians–with applications to non-autonomous ordinary and partial differential equations, arXiv preprint arXiv:2312.02817 (2023).
- K. Mizuta and K. Fujii, Optimal Hamiltonian simulation for time-periodic systems, Quantum 7, 962 (2023).
- Y.-H. Chen, A. Kalev, and I. Hen, Quantum algorithm for time-dependent hamiltonian simulation by permutation expansion, PRX Quantum 2, 030342 (2021).