Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Defining metric-aware size-shape measures to validate and optimize curved high-order meshes (2403.13528v1)

Published 20 Mar 2024 in cs.CE

Abstract: We define a regularized size-shape distortion (quality) measure for curved high-order elements on a Riemannian space. To this end, we measure the deviation of a given element, straight-sided or curved, from the stretching, alignment, and sizing determined by a target metric. The defined distortion (quality) is suitable to check the validity and the quality of straight-sided and curved elements on Riemannian spaces determined by constant and point-wise varying metrics. The examples illustrate that the distortion can be minimized to curve (deform) the elements of a given high-order (linear) mesh and try to match with curved (linear) elements the point-wise stretching, alignment, and sizing of a discrete target metric tensor. In addition, the resulting meshes simultaneously match the curved features of the target metric and boundary. Finally, to verify if the minimization of the metric-aware size-shape distortion leads to meshes approximating the target metric, we compute the Riemannian measures for the element edges, faces, and cells. The results show that, when compared to anisotropic straight-sided meshes, the Riemannian measures of the curved high-order mesh entities are closer to unit. Furthermore, the optimized meshes illustrate the potential of curved $r$-adaptation to improve the accuracy of a function representation.

Summary

We haven't generated a summary for this paper yet.