Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient numerical methods for the Maxey-Riley-Gatignol equations with Basset history term (2403.13515v3)

Published 20 Mar 2024 in math.NA, cs.CE, and cs.NA

Abstract: The Maxey-Riley-Gatignol equations (MRGE) describe the motion of a finite-sized, spherical particle in a fluid. Because of wake effects, the force acting on a particle depends on its past trajectory. This is modelled by an integral term in the MRGE, also called Basset force, that makes its numerical solution challenging and memory intensive. A recent approach proposed by Prasath et al. exploits connections between the integral term and fractional derivatives to reformulate the MRGE as a time-dependent partial differential equation on a semi-infinite pseudo-space. They also propose a numerical algorithm based on polynomial expansions. This paper develops a numerical approach based on finite difference instead, by adopting techniques by Koleva et al. and Fazio et al. to cope with the issues of having an unbounded spatial domain. We compare convergence order and computational efficiency for particles of varying size and density of the polynomial expansion by Prasath et al., our finite difference schemes and a direct integrator for the MRGE based on multi-step methods proposed by Daitche. While all methods achieve their theoretical convergence order for neutrally buoyant particles with zero initial relative velocity, they suffer from various degrees of order reduction if the initial relative velocity is non-zero or the particle has a different density than the fluid.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. M. R. Maxey, J. J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, The Physics of Fluids 26 (1983) 883–889.
  2. R. Govindarajan, S. Ravichandran, Cloud microatlas, Resonance 22 (2017) 269–277.
  3. Acceleration of rain initiation by cloud turbulence, Nature 419 (2002) 151–154.
  4. Sedimentation of elongated non-motile prolate spheroids in homogenous isotropic turbulence, arXiv e-prints (2016) arXiv–1611.
  5. History effects in the sedimentation of light aerosols in turbulence: The case of marine snow, Physical Review Fluids 1 (2016) 074203.
  6. The dispersion of spherical droplets in source–sink flows and their relevance to the COVID-19 pandemic, Physics of Fluids 32 (2020) 083302.
  7. Dynamics of finite-size particles in chaotic fluid flows, in: Nonlinear dynamics and chaos: advances and perspectives, Springer, 2010, pp. 51–87.
  8. Accurate solution method for the Maxey–Riley equation, and the effects of Basset history, Journal of Fluid Mechanics 868 (2019) 428–460.
  9. On the effect of the Boussinesq–Basset force on the radial migration of a Stokes particle in a vortex, Physics of Fluids 16 (2004) 1765–1776.
  10. Asymptotic dynamics of inertial particles with memory, Journal of nonlinear science 25 (2015) 1225–1255.
  11. G. G. Stokes, et al., On the effect of the internal friction of fluids on the motion of pendulums (1851).
  12. J. Boussinesq, Sur la resistance qu’oppose un fluide indefini en repos, sans pesanteur, au mouvement varie d’une sphere solide qu’il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carres et produits soient negligiables, CR Acad. Sc. Paris 100 (1885) 935–937.
  13. C. W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik, Leipzig: Akademische Verlagsgesellschaft m. b H. (1927).
  14. Building a Maxey–Riley framework for surface ocean inertial particle dynamics, Physics of Fluids 31 (2019) 096602.
  15. P. M. Lovalenti, J. F. Brady, The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number, Journal of Fluid Mechanics 256 (1993) 561–605.
  16. R. Mei, Flow due to an oscillating sphere and an expression for unsteady drag on the sphere at finite Reynolds number, Journal of Fluid Mechanics 270 (1994) 133–174.
  17. A. Dorgan, E. Loth, Efficient calculation of the history force at finite Reynolds numbers, International journal of multiphase flow 33 (2007) 833–848.
  18. P. A. Moreno-Casas, F. A. Bombardelli, Computation of the Basset force: recent advances and environmental flow applications, Environmental Fluid Mechanics 16 (2016) 193–208.
  19. Linear stability of particle laden flows: the influence of added mass, fluid acceleration and Basset history force, Meccanica 49 (2014) 811–827.
  20. H. A. Elghannay, D. K. Tafti, Development and validation of a reduced order history force model, International Journal of Multiphase Flow 85 (2016) 284–297.
  21. Differential formulation of the viscous history force on a particle for efficient and accurate computation, Journal of fluid mechanics 844 (2018) 970–993.
  22. An efficient, second order method for the approximation of the Basset history force, Journal of Computational Physics 230 (2011) 1465–1478.
  23. Y. Niño, M. García, Using Lagrangian particle saltation observations for bedload sediment transport modelling, Hydrological Processes 12 (1998) 1197–1218.
  24. N. Mordant, J.-F. Pinton, Velocity measurement of a settling sphere, The European Physical Journal B-Condensed Matter and Complex Systems 18 (2000) 343–352.
  25. A. Daitche, Advection of inertial particles in the presence of the history force: Higher order numerical schemes, Journal of Computational Physics 254 (2013) 93–106.
  26. E. E. Michaelides, A novel way of computing the Basset term in unsteady multiphase flow computations, Physics of Fluids A: Fluid Dynamics 4 (1992) 1579–1582.
  27. F. Tatom, The Basset term as a semiderivative, Applied Scientific Research 45 (1988) 283–285.
  28. A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 453 (1997) 1411–1443.
  29. A Python toolbox for the numerical solution of the Maxey-Riley equation, PAMM 22 (2023) e202200242.
  30. M. N. Koleva, Numerical solution of the heat equation in unbounded domains using quasi-uniform grids, in: International Conference on Large-Scale Scientific Computing, Springer, 2005, pp. 509--517.
  31. Numerical solution of boundary value problems in unlimited area, Matematicheskoe modelirovanie 14 (2002) 10--22.
  32. R. Fazio, A. Jannelli, Finite difference schemes on quasi-uniform grids for BVPs on infinite intervals, Journal of Computational and Applied Mathematics 269 (2014) 14--23.
  33. S. K. Lele, Compact finite difference schemes with spectral-like resolution, Journal of computational physics 103 (1992) 16--42.
  34. Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions, Symmetry 14 (2022) 1720.
  35. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17 (2020) 261--272.
  36. D. A. Knoll, D. E. Keyes, Jacobian-free Newton--Krylov methods: a survey of approaches and applications, Journal of Computational Physics 193 (2004) 357--397.
  37. A technique for accelerating the convergence of restarted GMRES, SIAM Journal on Matrix Analysis and Applications 26 (2005) 962--984.
  38. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Applied Numerical Mathematics 25 (1997) 151--167.
  39. On the Lagrangian dynamics of atmospheric zonal jets and the permeability of the stratospheric polar vortex, Journal of the Atmospheric Sciences 64 (2007) 3595--3610.
  40. Spectral-clustering approach to Lagrangian vortex detection, Physical Review E 93 (2016) 063107.
  41. Coexistence of inverse and direct energy cascades in Faraday waves, Fluids 7 (2022) 148.
  42. Three dimensional flows beneath a thin layer of 2d turbulence induced by faraday waves, Experiments in Fluids 62 (2021) 1--13.
  43. K. Padberg-Gehle, C. Schneide, Network-based study of Lagrangian transport and mixing, Nonlinear Processes in Geophysics 24 (2017) 661--671.
  44. Order results for implicit Runge–Kutta methods applied to stiff systems, SIAM Journal on Numerical Analysis 22 (1985) 515--534.
  45. A framework for high-fidelity particle tracking on massively parallel systems, Computer Physics Communications 289 (2023) 108762.
  46. Flow-following sensor devices: A tool for bridging data and model predictions in large-scale fermentations, Computational and Structural Biotechnology Journal 18 (2020) 2908–2919.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com