Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Design, construction, and operation of a 1-ton Water-based Liquid scintillator detector at Brookhaven National Laboratory (2403.13231v4)

Published 20 Mar 2024 in physics.ins-det, hep-ex, and nucl-ex

Abstract: Water-based liquid scintillators (WbLS) are attractive neutrino detector materials because they allow us to tune the ratio of the Cherenkov and scintillation signals. Using WbLS large-scale neutrino experiments can benefit from both directional reconstruction and enhanced low-energy efficiency. Furthermore, broadening the science capability of such materials by metal doping may be better suited for water based liquid scintillators. We recently constructed and commissioned a 1-ton WbLS detector with good photosensor coverage and a capable data acquisition system. We intend to use this flexible detector system as a testbed for WbLS R&D. In this paper we give an overview of the 1-ton system and provide some early analysis results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. J. R. Klein et al. Future Advances in Photon-Based Neutrino Detectors: A SNOWMASS White Paper. arXiv: 2203.07479, 3 2022.
  2. M. Agostini et al. Correlated and integrated directionality for sub-MeV solar neutrinos in Borexino. Phys. Rev. D, 105(5):052002, 2022.
  3. A. Allega et al. Event-by-Event Direction Reconstruction of Solar Neutrinos in a High Light-Yield Liquid Scintillator. arXiv:2309.06341, 9 2023.
  4. A new water-based liquid scintillator and potential applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 660(1):51–56, 2011.
  5. M. Ascencio-Sosa et al. Deployment of Water-based Liquid Scintillator in the Accelerator Neutrino Neutron Interaction Experiment. arXiv:2312.09335, 12 2023.
  6. Metal-loaded organic scintillators for neutrino physics. Journal of Physics G: Nuclear and Particle Physics, 43(9):093001, August 2016.
  7. M. Askins et al. THEIA: an advanced optical neutrino detector. Eur. Phys. J. C, 80(5):416, 2020.
  8. T. Anderson et al. Eos: conceptual design for a demonstrator of hybrid optical detector technology. JINST, 18(02):P02009, 2023.
  9. I. Anghel et al. Letter of Intent: The Accelerator Neutrino Neutron Interaction Experiment (ANNIE). arXiv: 1504.01480, 4 2015.
  10. A. Cabrera et al. Neutrino Physics with an Opaque Detector. Commun. Phys., 4:273, 2021.
  11. R. Zhao et al. Performance of a ton-scale water-based liquid scintillator detector. JINST, 19:P01003, 2024.
  12. Measurement of Radiation Damage of Water-based Liquid Scintillator and Liquid Scintillator. JINST, 10(10):P10027, 2015.
  13. M. V. Diwan. Liquid Scintillators; technology and challenges. TIPP2023, 2023.
  14. Momentive. Rtv6130 silicone. https://www.momentive.com/en-us/categories/adhesives-and-sealants.
  15. Knf pumps. https://knf.com/en/us.
  16. Characterization of water-based liquid scintillator for Cherenkov and scintillation separation. Eur. Phys. J. C, 80(9):867, 2020.
  17. Experiment to demonstrate separation of Cherenkov and scintillation signals. Phys. Rev. C, 95(5):055801, 2017.
  18. The intrinsic property of gadolinium-doped water-based liquid scintillators. under preparation.
  19. Richards Benjamin. The tooldaq daq software framework & its use in the hyper-k & annie detectors. EPJ Web Conf., 214:01022, 2019.
  20. Eljen Technology. Plastic scintillator. https://eljentechnology.com/products/plastic-scintillators/ej-200-ej-204-ej-208-ej-212.
  21. G. K. Schenter and P. Vogel. A simple approximation of the fermi function in nuclear beta decay. Nuclear Science and Engineering, 83:393–396, 1983.
  22. V. Alenkov et al. Alpha backgrounds in the AMoRE-Pilot experiment. Eur. Phys. J. C, 82(12):1140, 2022.
  23. M. Askins et al. Letter of interest the rat (-pac) simulation and analysis code base. Snowmass2021, 2020.
  24. Ratpac-two. https://github.com/rat-pac/ratpac-two.
  25. P. A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020.
Citations (2)

Summary

We haven't generated a summary for this paper yet.