Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
82 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
225 tokens/sec
2000 character limit reached

Revisiting shear stress tensor evolution: Non-resistive magnetohydrodynamics with momentum-dependent relaxation time (2403.13160v2)

Published 19 Mar 2024 in hep-ph and nucl-th

Abstract: This study aims to develop second-order relativistic viscous magnetohydrodynamics (MHD) derived from kinetic theory within an extended relaxation time approximation (momentum/energy dependent) for the collision kernel. The investigation involves a detailed examination of shear stress tensor evolution equations and associated transport coefficients. The Boltzmann equation is solved using a Chapman-Enskog-like gradient expansion for a charge-conserved conformal system, incorporating a momentum-dependent relaxation time. The derived relativistic non-resistive, viscous second-order MHD equations for the shear stress tensor reveal significant modifications in the coupling with dissipative charge current and magnetic field due to the momentum dependence of the relaxation time. By utilizing a power law parametrization to quantify the momentum dependence of the relaxation time, the anisotropic magnetic field-dependent shear coefficients in the Navier-Stokes limit have been investigated. The resulting viscous coefficients are seen to be sensitive to the momentum dependence of the relaxation time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com