Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PE-Planner: A Performance-Enhanced Quadrotor Motion Planner for Autonomous Flight in Complex and Dynamic Environments (2403.12865v1)

Published 19 Mar 2024 in cs.RO

Abstract: The role of a motion planner is pivotal in quadrotor applications, yet existing methods often struggle to adapt to complex environments, limiting their ability to achieve fast, safe, and robust flight. In this letter, we introduce a performance-enhanced quadrotor motion planner designed for autonomous flight in complex environments including dense obstacles, dynamic obstacles, and unknown disturbances. The global planner generates an initial trajectory through kinodynamic path searching and refines it using B-spline trajectory optimization. Subsequently, the local planner takes into account the quadrotor dynamics, estimated disturbance, global reference trajectory, control cost, time cost, and safety constraints to generate real-time control inputs, utilizing the framework of model predictive contouring control. Both simulations and real-world experiments corroborate the heightened robustness, safety, and speed of the proposed motion planner. Additionally, our motion planner achieves flights at more than 6.8 m/s in a challenging and complex racing scenario.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. D. Floreano and R. J. Wood, “Science, technology and the future of small autonomous drones,” Nature, vol. 521, pp. 460–466, 2015.
  2. B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient quadrotor trajectory generation for fast autonomous flight,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3529–3536, 2019.
  3. X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “Ego-planner: An esdf-free gradient-based local planner for quadrotors,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 478–485, 2021.
  4. J. Tordesillas, B. T. Lopez, M. Everett, and J. P. How, “Faster: Fast and safe trajectory planner for navigation in unknown environments,” IEEE Transactions on Robotics, vol. 38, no. 2, pp. 922–938, 2022.
  5. D. Lam, C. Manzie, and M. Good, “Model predictive contouring control,” in 49th IEEE Conference on Decision and Control (CDC), pp. 6137–6142, 2010.
  6. A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predictive contouring control for time-optimal quadrotor flight,” IEEE Transactions on Robotics, vol. 38, no. 6, pp. 3340–3356, 2022.
  7. A. Romero, R. Penicka, and D. Scaramuzza, “Time-optimal online replanning for agile quadrotor flight,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7730–7737, 2022.
  8. E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Mueller, V. Koltun, and D. Scaramuzza, “Champion-level drone racing using deep reinforcement learning,” Nature, vol. 620, pp. 982–987, 08 2023.
  9. L. Quan, Z. Zhang, X. Zhong, C. Xu, and F. Gao, “Eva-planner: Environmental adaptive quadrotor planning,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 398–404, 2021.
  10. J. Ji, X. Zhou, C. Xu, and F. Gao, “Cmpcc: Corridor-based model predictive contouring control for aggressive drone flight,” in Experimental Robotics, pp. 37–46, Springer International Publishing, 2021.
  11. Y. Wang, J. Ji, Q. Wang, C. Xu, and F. Gao, “Autonomous flights in dynamic environments with onboard vision,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1966–1973, 2021.
  12. S. Khatoon, D. Gupta, and L. K. Das, “Pid & lqr control for a quadrotor: Modeling and simulation,” in 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 796–802, 2014.
  13. H. Voos, “Nonlinear control of a quadrotor micro-uav using feedback-linearization,” in 2009 IEEE International Conference on Mechatronics, pp. 1–6, 2009.
  14. T. Madani and A. Benallegue, “Control of a quadrotor mini-helicopter via full state backstepping technique,” in Proceedings of the 45th IEEE Conference on Decision and Control, pp. 1515–1520, 2006.
  15. D. Hanover, P. Foehn, S. Sun, E. Kaufmann, and D. Scaramuzza, “Performance, precision, and payloads: Adaptive nonlinear mpc for quadrotors,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 690–697, 2022.
  16. M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally efficient motion primitive for quadrocopter trajectory generation,” IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1294–1310, 2015.
  17. K. Qin, “General matrix representations for b-splines,” The Visual Computer, vol. 16, no. 3, pp. 177–186, 1998.
  18. X. Xu, P. Tabuada, J. W. Grizzle, and A. Ames, “Robustness of control barrier functions for safety critical control,” in IFAC Conference on Analysis and Design of Hybrid Systems, 2016.
  19. Z. Jian, Z. Yan, X. Lei, Z. Lu, B. Lan, X. Wang, and B. Liang, “Dynamic control barrier function-based model predictive control to safety-critical obstacle-avoidance of mobile robot,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 3679–3685, 2023.
  20. W. Xiao, C. G. Cassandras, C. A. Belta, and D. Rus, “Control barrier functions for systems with multiple control inputs,” in 2022 American Control Conference (ACC), pp. 2221–2226, 2022.
  21. T. Jin, J. Di, X. Wang, and H. Ji, “Safety barrier certificates for path integral control: Safety-critical control of quadrotors,” IEEE Robotics and Automation Letters, vol. 8, no. 9, pp. 6006–6012, 2023.
  22. Y. Xiong, D.-H. Zhai, M. Tavakoli, and Y. Xia, “Discrete-time control barrier function: High-order case and adaptive case,” IEEE Transactions on Cybernetics, vol. 53, no. 5, pp. 3231–3239, 2023.
  23. W.-H. Chen, J. Yang, L. Guo, and S. Li, “Disturbance-observer-based control and related methods—an overview,” IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 1083–1095, 2016.
  24. S. Chakrabarty, B. Bandyopadhyay, J. A. Moreno, and L. Fridman, “Discrete sliding mode control for systems with arbitrary relative degree output,” in 2016 14th International Workshop on Variable Structure Systems (VSS), pp. 160–165, 2016.

Summary

We haven't generated a summary for this paper yet.