Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shared Autonomy via Variable Impedance Control and Virtual Potential Fields for Encoding Human Demonstration (2403.12720v2)

Published 19 Mar 2024 in cs.RO

Abstract: This article introduces a framework for complex human-robot collaboration tasks, such as the co-manufacturing of furniture. For these tasks, it is essential to encode tasks from human demonstration and reproduce these skills in a compliant and safe manner. Therefore, two key components are addressed in this work: motion generation and shared autonomy. We propose a motion generator based on a time-invariant potential field, capable of encoding wrench profiles, complex and closed-loop trajectories, and additionally incorporates obstacle avoidance. Additionally, the paper addresses shared autonomy (SA) which enables synergetic collaboration between human operators and robots by dynamically allocating authority. Variable impedance control (VIC) and force control are employed, where impedance and wrench are adapted based on the human-robot autonomy factor derived from interaction forces. System passivity is ensured by an energy-tank based task passivation strategy. The framework's efficacy is validated through simulations and an experimental study employing a Franka Emika Research 3 robot. More information can be found on the project website https://shailjadav.github.io/SALADS/

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. L. Peternel, N. Tsagarakis, D. Caldwell, and A. Ajoudani, “Robot adaptation to human physical fatigue in human–robot co-manipulation,” Autonomous Robots, vol. 42, pp. 1011–1021, 2018.
  2. A. Pervez, H. Latifee, J.-H. Ryu, and D. Lee, “Motion encoding with asynchronous trajectories of repetitive teleoperation tasks and its extension to human-agent shared teleoperation,” Autonomous Robots, vol. 43, pp. 2055–2069, 2019.
  3. ——, “Human-agent shared teleoperation: a case study utilizing haptic feedback,” in Haptic Interaction: Perception, Devices and Algorithms 3.   Springer, 2019, pp. 247–251.
  4. R. Balachandran, H. Mishra, M. Cappelli, B. Weber, C. Secchi, C. Ott, and A. Albu-Schaeffer, “Adaptive authority allocation in shared control of robots using bayesian filters,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 11 298–11 304.
  5. A. Coelho, Y. Sarkisov, X. Wu, H. Mishra, H. Singh, A. Dietrich, A. Franchi, K. Kondak, and C. Ott, “Whole-body teleoperation and shared control of redundant robots with applications to aerial manipulation,” Journal of Intelligent & Robotic Systems, vol. 102, pp. 1–22, 2021.
  6. S. Jadav and H. J. Palanthandalam-Madapusi, “Configuration and force-field aware variable impedance control with faster re-learning,” Journal of Intelligent & Robotic Systems, vol. 110, no. 1, p. 3, 2024.
  7. S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dynamical systems with gaussian mixture models,” IEEE Transactions on Robotics, vol. 27, no. 5, pp. 943–957, 2011.
  8. K. Kronander, M. Khansari, and A. Billard, “Incremental motion learning with locally modulated dynamical systems,” Robotics and Autonomous Systems, vol. 70, pp. 52–62, 2015.
  9. M. Saveriano and D. Lee, “Incremental skill learning of stable dynamical systems,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 6574–6581.
  10. M. Khoramshahi and A. Billard, “A dynamical system approach for detection and reaction to human guidance in physical human–robot interaction,” Autonomous Robots, vol. 44, no. 8, pp. 1411–1429, 2020.
  11. S. S. M. Salehian, M. Khoramshahi, and A. Billard, “A dynamical system approach for softly catching a flying object: Theory and experiment,” IEEE Transactions on Robotics, vol. 32, no. 2, pp. 462–471, 2016.
  12. S. M. Khansari-Zadeh and A. Billard, “A dynamical system approach to realtime obstacle avoidance,” Autonomous Robots, vol. 32, pp. 433–454, 2012.
  13. C. Blocher, M. Saveriano, and D. Lee, “Learning stable dynamical systems using contraction theory,” in 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2017, pp. 124–129.
  14. F. Nawaz, T. Li, N. Matni, and N. Figueroa, “Learning safe and stable motion plans with neural ordinary differential equations,” arXiv preprint arXiv:2308.00186, 2023.
  15. N. Figueroa and A. Billard, “A physically-consistent bayesian non-parametric mixture model for dynamical system learning,” in Proceedings of The 2nd Conference on Robot Learning, ser. Proceedings of Machine Learning Research, A. Billard, A. Dragan, J. Peters, and J. Morimoto, Eds., vol. 87.   PMLR, 29–31 Oct 2018, pp. 927–946. [Online]. Available: https://proceedings.mlr.press/v87/figueroa18a.html
  16. S. M. Khansari-Zadeh and O. Khatib, “Learning potential functions from human demonstrations with encapsulated dynamic and compliant behaviors,” Autonomous Robots, vol. 41, pp. 45–69, 2017.
  17. A. Pichler, S. C. Akkaladevi, M. Ikeda, M. Hofmann, M. Plasch, C. Wögerer, and G. Fritz, “Towards shared autonomy for robotic tasks in manufacturing,” Procedia Manufacturing, vol. 11, pp. 72–82, 2017.
  18. M. Sharifi, A. Zakerimanesh, J. K. Mehr, A. Torabi, V. K. Mushahwar, and M. Tavakoli, “Impedance variation and learning strategies in human–robot interaction,” IEEE Transactions on Cybernetics, vol. 52, no. 7, pp. 6462–6475, 2021.
  19. T. Fujiki and K. Tahara, “Series admittance–impedance controller for more robust and stable extension of force control,” ROBOMECH Journal, vol. 9, no. 1, p. 23, 2022.
  20. C. T. Landi, F. Ferraguti, C. Fantuzzi, and C. Secchi, “A passivity-based strategy for coaching in human-robot interaction,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 3279–3284.
  21. R. Kikuuwe, “Torque-bounded admittance control realized by a set-valued algebraic feedback,” IEEE Transactions on Robotics, vol. 35, no. 5, pp. 1136–1149, 2019.
  22. F. Ferraguti, C. Secchi, and C. Fantuzzi, “A tank-based approach to impedance control with variable stiffness,” in 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 4948–4953.
  23. C. Schindlbeck and S. Haddadin, “Unified passivity-based cartesian force/impedance control for rigid and flexible joint robots via task-energy tanks,” in 2015 IEEE international conference on robotics and automation (ICRA).   IEEE, 2015, pp. 440–447.
  24. N. Enayati, S. Mariani, A. Wahrburg, and A. M. Zanchettin, “Variable-impedance and force control for robust learning of contact-rich manipulation tasks from user demonstration,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 9834–9840, 2020, 21st IFAC World Congress. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896320334492
  25. J. S. Dai, “Euler–rodrigues formula variations, quaternion conjugation and intrinsic connections,” Mechanism and Machine Theory, vol. 92, pp. 144–152, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0094114X15000415
  26. P. Ram and K. Sinha, “Revisiting kd-tree for nearest neighbor search,” in Proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining, 2019, pp. 1378–1388.
  27. S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marín-Jiménez, “Automatic generation and detection of highly reliable fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280–2292, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320314000235
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com