Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Local Computation of PageRank: Simple and Optimal (2403.12648v1)

Published 19 Mar 2024 in cs.DS

Abstract: We revisit the classic local graph exploration algorithm ApproxContributions proposed by Andersen, Borgs, Chayes, Hopcroft, Mirrokni, and Teng (WAW '07, Internet Math. '08) for computing an $\epsilon$-approximation of the PageRank contribution vector for a target node $t$ on a graph with $n$ nodes and $m$ edges. We give a worst-case complexity bound of ApproxContributions as $O(n\pi(t)/\epsilon\cdot\min(\Delta_{in},\Delta_{out},\sqrt{m}))$, where $\pi(t)$ is the PageRank score of $t$, and $\Delta_{in}$ and $\Delta_{out}$ are the maximum in-degree and out-degree of the graph, resp. We also give a lower bound of $\Omega(\min(\Delta_{in}/\delta,\Delta_{out}/\delta,\sqrt{m}/\delta,m))$ for detecting the $\delta$-contributing set of $t$, showing that the simple ApproxContributions algorithm is already optimal. We also investigate the computational complexity of locally estimating a node's PageRank centrality. We improve the best-known upper bound of $\widetilde{O}(n{2/3}\cdot\min(\Delta_{out}{1/3},m{1/6}))$ given by Bressan, Peserico, and Pretto (SICOMP '23) to $O(n{1/2}\cdot\min(\Delta_{in}{1/2},\Delta_{out}{1/2},m{1/4}))$ by simply combining ApproxContributions with the Monte Carlo simulation method. We also improve their lower bound of $\Omega(\min(n{1/2}\Delta_{out}{1/2},n{1/3}m{1/3}))$ to $\Omega(n{1/2}\cdot\min(\Delta_{in}{1/2},\Delta_{out}{1/2},m{1/4}))$ if $\min(\Delta_{in},\Delta_{out})=\Omega(n{1/3})$, and to $\Omega(n{1/2-\gamma}(\min(\Delta_{in},\Delta_{out})){1/2+\gamma})$ if $\min(\Delta_{in},\Delta_{out})=o(n{1/3})$, where $\gamma>0$ is an arbitrarily small constant. Our matching upper and lower bounds resolve the open problem of whether one can tighten the bounds given by Bressan, Peserico, and Pretto (FOCS '18, SICOMP '23). Remarkably, the techniques and analyses for proving all our results are surprisingly simple.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. Local computation of pagerank contributions. In Proc. 5th Int. Workshop Algorithms Models Web Graph, volume 4863, pages 150–165, 2007. doi:10.1007/978-3-540-77004-6_12.
  2. Robust pagerank and locally computable spam detection features. In Proc. 4th Int. Workshop Adversarial Inf. Retrieval Web, pages 69–76, 2008. doi:10.1145/1451983.1452000.
  3. Local computation of pagerank contributions. Internet Math., 5(1):23–45, 2008. doi:10.1080/15427951.2008.10129302.
  4. Local graph partitioning using pagerank vectors. In Proc. 47th Annu. IEEE Symp. Found. Comput. Sci., pages 475–486, 2006. doi:10.1109/FOCS.2006.44.
  5. Using pagerank to locally partition a graph. Internet Math., 4(1):35–64, 2007. doi:10.1080/15427951.2007.10129139.
  6. Monte carlo methods in pagerank computation: when one iteration is sufficient. SIAM J. Numer. Anal., 45(2):890–904, 2007. doi:10.1137/050643799.
  7. A sublinear time algorithm for pagerank computations. In Proc. 9th Int. Workshop Algorithms Models Web Graph, volume 7323, pages 41–53, 2012. doi:10.1007/978-3-642-30541-2_4.
  8. Multiscale matrix sampling and sublinear-time pagerank computation. Internet Math., 10(1-2):20–48, 2014. doi:10.1080/15427951.2013.802752.
  9. Scaling graph neural networks with approximate pagerank. In Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pages 2464–2473, 2020. doi:10.1145/3394486.3403296.
  10. Fast bidirectional probability estimation in markov models. In Advances Neural Inf. Process. Syst. 28, pages 1423–1431, 2015. URL: https://proceedings.neurips.cc/paper/2015/hash/ede7e2b6d13a41ddf9f4bdef84fdc737-Abstract.html.
  11. Local approximation of pagerank and reverse pagerank. In Proc. 17th ACM Int. Conf. Inf. Knowl. Manage., pages 279–288, 2008. doi:10.1145/1458082.1458122.
  12. The anatomy of a large-scale hypertextual web search engine. Comput. Netw., 30(1-7):107–117, 1998. doi:10.1016/S0169-7552(98)00110-X.
  13. Local computation of pagerank: the ranking side. In Proc. 20th ACM Int. Conf. Inf. Knowl. Manage., pages 631–640, 2011. doi:10.1145/2063576.2063670.
  14. The power of local information in pagerank. In Proc. 22nd Int. World Wide Web Conf., pages 179–180, 2013. doi:10.1145/2487788.2487878.
  15. Simple set cardinality estimation through random sampling. CoRR, abs/1512.07901, 2015. doi:10.48550/arXiv.1512.07901.
  16. Sublinear algorithms for local graph centrality estimation. In Proc. 59th Annu. IEEE Symp. Found. Comput. Sci., pages 709–718, 2018. doi:10.1109/FOCS.2018.00073.
  17. Sublinear algorithms for local graph-centrality estimation. SIAM J. Comput., 52(4):968–1008, 2023. doi:10.1137/19M1266976.
  18. Local methods for estimating pagerank values. In Proc. 13th ACM Int. Conf. Inf. Knowl. Manage., pages 381–389, 2004. doi:10.1145/1031171.1031248.
  19. Fan Chung. The heat kernel as the pagerank of a graph. Proc. Nat. Acad. Sci., 104(50):19735–19740, 2007. doi:10.1073/pnas.0708838104.
  20. Testing graph clusterability: algorithms and lower bounds. In Proc. 59th Annu. IEEE Symp. Found. Comput. Sci., pages 497–508, 2018. doi:10.1109/FOCS.2018.00054.
  21. Testing cluster structure of graphs. In Proc. 47th Annu. ACM Symp. Theory Comput., pages 723–732, 2015. doi:10.1145/2746539.2746618.
  22. Scalable graph neural networks via bidirectional propagation. In Advances Neural Inf. Process. Syst. 33, 2020. URL: https://proceedings.neurips.cc/paper/2020/hash/a7789ef88d599b8df86bbee632b2994d-Abstract.html.
  23. An optimal algorithm for monte carlo estimation. SIAM J. Comput., 29(5):1484–1496, 2000. doi:10.1137/S0097539797315306.
  24. Towards scaling fully personalized pagerank: algorithms, lower bounds, and experiments. Internet Math., 2(3):333–358, 2005. doi:10.1080/15427951.2005.10129104.
  25. Variational perspective on local graph clustering. Math. Program., 174(1-2):553–573, 2019. doi:10.1007/S10107-017-1214-8.
  26. Property testing and its connection to learning and approximation. J. ACM, 45(4):653–750, 1998. doi:10.1145/285055.285060.
  27. Parallel personalized pagerank on dynamic graphs. Proc. VLDB Endowment, 11(1):93–106, 2017. doi:10.14778/3151113.3151121.
  28. Approximating personalized pagerank with minimal use of web graph data. Internet Math., 3(3):257–294, 2007. doi:10.1080/15427951.2006.10129128.
  29. Property testing in bounded degree graphs. Algorithmica, 32(2):302–343, 2002. doi:10.1007/S00453-001-0078-7.
  30. Taher H. Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE Trans. Knowl. Data Eng., 15(4):784–796, 2003. doi:10.1109/TKDE.2003.1208999.
  31. Random generation of combinatorial structures from a uniform distribution. Theor. Comput. Sci., 43:169–188, 1986. doi:10.1016/0304-3975(86)90174-X.
  32. Predict then propagate: graph neural networks meet personalized pagerank. In Proc. 7th Int. Conf. Learn. Representations, 2019. URL: https://openreview.net/forum?id=H1gL-2A9Ym.
  33. Satyen Kale and C. Seshadhri. An expansion tester for bounded degree graphs. SIAM J. Comput., 40(3):709–720, 2011. doi:10.1137/100802980.
  34. Bidirectional pagerank estimation: from average-case to worst-case. In Proc. 12th Int. Workshop Algorithms Models Web Graph, volume 9479, pages 164–176, 2015. doi:10.1007/978-3-319-26784-5_13.
  35. Personalized pagerank estimation and search: A bidirectional approach. In Proc. 9th ACM Int. Conf. Web Search Data Mining, pages 163–172, 2016. doi:10.1145/2835776.2835823.
  36. FAST-PPR: scaling personalized pagerank estimation for large graphs. In Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pages 1436–1445, 2014. doi:10.1145/2623330.2623745.
  37. Personalized pagerank to a target node. CoRR, abs/1304.4658, 2013. doi:10.48550/arXiv.1304.4658.
  38. Efficient personalized pagerank computation: A spanning forests sampling based approach. In Proc. 2022 ACM SIGMOD Int. Conf. Manage. Data, pages 2048–2061, 2022. doi:10.1145/3514221.3526140.
  39. Single-source personalized pageranks with workload robustness. IEEE Trans. Knowl. Data Eng., 35(6):6320–6334, 2023. doi:10.1109/TKDE.2022.3175814.
  40. Graph sparsification by effective resistances. SIAM J. Comput., 40(6):1913–1926, 2011. doi:10.1137/080734029.
  41. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In Proc. 36th Annu. ACM Symp. Theory Comput., pages 81–90, 2004. doi:10.1145/1007352.1007372.
  42. Approximate graph propagation. In Proc. 27th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pages 1686–1696, 2021. doi:10.1145/3447548.3467243.
  43. TopPPR: Top-k personalized pagerank queries with precision guarantees on large graphs. In Proc. 2018 ACM SIGMOD Int. Conf. Manage. Data, pages 441–456, 2018. doi:10.1145/3183713.3196920.
  44. PRSim: Sublinear time simrank computation on large power-law graphs. In Proc. 2019 ACM SIGMOD Int. Conf. Manage. Data, pages 1042–1059, 2019. doi:10.1145/3299869.3319873.
  45. Efficient algorithms for finding approximate heavy hitters in personalized pageranks. In Proc. 2018 ACM SIGMOD Int. Conf. Manage. Data, pages 1113–1127, 2018. doi:10.1145/3183713.3196919.
  46. HubPPR: Effective indexing for approximate personalized pagerank. Proc. VLDB Endowment, 10(3):205–216, 2016. doi:10.14778/3021924.3021936.
  47. Estimating single-node pagerank in O~⁢(min⁡{dt,m})~𝑂subscript𝑑𝑡𝑚\tilde{O}\left(\min\big{\{}d_{t},\sqrt{m}\big{\}}\right)over~ start_ARG italic_O end_ARG ( roman_min { italic_d start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , square-root start_ARG italic_m end_ARG } ) time. Proc. VLDB Endowment, 16(11):2949–2961, 2023. doi:10.14778/3611479.3611500.
  48. Personalized pagerank to a target node, revisited. In Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pages 657–667, 2020. doi:10.1145/3394486.3403108.
  49. Scalable graph embeddings via sparse transpose proximities. In Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pages 1429–1437, 2019. doi:10.1145/3292500.3330860.
  50. Approximate personalized pagerank on dynamic graphs. In Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pages 1315–1324, 2016. doi:10.1145/2939672.2939804.
  51. Instant graph neural networks for dynamic graphs. In Proc. 28th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pages 2605–2615, 2022. doi:10.1145/3534678.3539352.
Citations (1)

Summary

We haven't generated a summary for this paper yet.