Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FairSIN: Achieving Fairness in Graph Neural Networks through Sensitive Information Neutralization (2403.12474v2)

Published 19 Mar 2024 in cs.LG and cs.CY

Abstract: Despite the remarkable success of graph neural networks (GNNs) in modeling graph-structured data, like other machine learning models, GNNs are also susceptible to making biased predictions based on sensitive attributes, such as race and gender. For fairness consideration, recent state-of-the-art (SOTA) methods propose to filter out sensitive information from inputs or representations, e.g., edge dropping or feature masking. However, we argue that such filtering-based strategies may also filter out some non-sensitive feature information, leading to a sub-optimal trade-off between predictive performance and fairness. To address this issue, we unveil an innovative neutralization-based paradigm, where additional Fairness-facilitating Features (F3) are incorporated into node features or representations before message passing. The F3 are expected to statistically neutralize the sensitive bias in node representations and provide additional nonsensitive information. We also provide theoretical explanations for our rationale, concluding that F3 can be realized by emphasizing the features of each node's heterogeneous neighbors (neighbors with different sensitive attributes). We name our method as FairSIN, and present three implementation variants from both data-centric and model-centric perspectives. Experimental results on five benchmark datasets with three different GNN backbones show that FairSIN significantly improves fairness metrics while maintaining high prediction accuracies.

Citations (6)

Summary

We haven't generated a summary for this paper yet.