Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Circular Belief Propagation for Approximate Probabilistic Inference (2403.12106v1)

Published 17 Mar 2024 in cs.AI and cs.LG

Abstract: Belief Propagation (BP) is a simple probabilistic inference algorithm, consisting of passing messages between nodes of a graph representing a probability distribution. Its analogy with a neural network suggests that it could have far-ranging applications for neuroscience and artificial intelligence. Unfortunately, it is only exact when applied to cycle-free graphs, which restricts the potential of the algorithm. In this paper, we propose Circular Belief Propagation (CBP), an extension of BP which limits the detrimental effects of message reverberation caused by cycles by learning to detect and cancel spurious correlations and belief amplifications. We show in numerical experiments involving binary probabilistic graphs that CBP far outperforms BP and reaches good performance compared to that of previously proposed algorithms.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets