Pedestrian Tracking with Monocular Camera using Unconstrained 3D Motion Model (2403.11978v2)
Abstract: A first-principle single-object model is proposed for pedestrian tracking. It is assumed that the extent of the moving object can be described via known statistics in 3D, such as pedestrian height. The proposed model thus need not constrain the object motion in 3D to a common ground plane, which is usual in 3D visual tracking applications. A nonlinear filter for this model is implemented using the unscented Kalman filter (UKF) and tested using the publicly available MOT-17 dataset. The proposed solution yields promising results in 3D while maintaining perfect results when projected into the 2D image. Moreover, the estimation error covariance matches the true one. Unlike conventional methods, the introduced model parameters have convenient meaning and can readily be adjusted for a problem.
- YBS Publishing, 2011.
- Thomson Learning, third ed., 2008.
- A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime tracking,” in 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464–3468, 2016.
- N. Aharon, R. Orfaig, and B.-Z. Bobrovsky, “BoT-SORT: Robust associations multi-pedestrian tracking.” arXiv:2206.14651, 2022.
- J. Krejčí, O. Kost, O. Straka, and J. Duník, “Bounding box dynamics in visual tracking: Modeling and noise covariance estimation,” in 2023 26th International Conf. on Information Fusion (FUSION), pp. 1–6, 2023.
- J. Krejčí, O. Kost, and O. Straka, “Bounding box detection in visual tracking: Measurement model parameter estimation,” in 2023 26th International Conf. on Information Fusion (FUSION), pp. 1–8, 2023.
- J. Wang, W. Choi, J. Diaz, and C. Trott, “The 3d position estimation and tracking of a surface vehicle using a mono-camera and machine learning,” Electronics, vol. 11, no. 14, 2022.
- C. Wojek, S. Walk, S. Roth, K. Schindler, and B. Schiele, “Monocular visual scene understanding: Understanding multi-object traffic scenes,” IEEE Tr. on Pat. Anal. and Mach. Int., vol. 35, no. 4, pp. 882–897, 2013.
- T. Junli and K. Reinhard, “Tracking of 2d or 3d irregular movement by a family of unscented Kalman filters,” Journal of Inf. and Communication Conv. Engineering, vol. 10, pp. 307–314, 09 2012.
- A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The KITTI vision benchmark suite,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361, 2012.
- S. Scheidegger, J. Benjaminsson, E. Rosenberg, A. Krishnan, and K. Granström, “Mono-camera 3D multi-object tracking using deep learning detections and PMBM filtering,” in 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 433–440, 2018.
- M. Meuter, U. Iurgel, S.-B. Park, and A. Kummert, “The unscented Kalman filter for pedestrian tracking from a moving host,” in 2008 IEEE Intelligent Vehicles Symposium, pp. 37–42, 2008.
- T. Liu, Y. Liu, Z. Tang, and J.-N. Hwang, “Adaptive ground plane estimation for moving camera-based 3d object tracking,” in 2017 IEEE 19th Int. Workshop on Multimedia Signal Proc. (MMSP), pp. 1–6, 2017.
- M. Kohler, “Using the Kalman filter to track human interactive motion - modelling and initialization of the Kalman filter for translational motion,” tech. rep., Universität Dortmund, 1997.
- M. Bertozzi, A. Broggi, A. Fascioli, A. Tibaldi, R. Chapuis, and F. Chausse, “Pedestrian localization and tracking system with kalman filtering,” in IEEE Intelligent Vehicles Symp., 2004, pp. 584–589, 2004.
- A. Milan, L. Leal-Taixe, I. Reid, S. Roth, and K. Schindler, “MOT16: A benchmark for multi-object tracking,” arXiv:1603.00831, 2016.
- A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “website of the Multiple Object Tracking Benchmark MOT17,” at https://motchallenge.net/data/MOT17/, last checked 2024, March 14.
- D. Hoiem, A. A. Efros, and M. Hebert, “Putting objects in perspective,” International Journal of Computer Vision, vol. 80, no. 1, pp. 3–15, 2008.
- L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler, “MOTChallenge 2015: Towards a benchmark for multi-target tracking,” arXiv:1504.01942, 2015.
- P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S. Roth, K. Schindler, and L. Leal-Taixe, “MOT20: A benchmark for multi object tracking in crowded scenes,” arXiv:2003.09003, 2020.
- N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a deep association metric.” arXiv:1703.07402, 2017.
- Springer Berlin Heidelberg, 2009.
- Artech House, second ed., 2013.
- N. Schneider and D. M. Gavrila, “Pedestrian path prediction with recursive bayesian filters: A comparative study,” in Pattern Recognition (J. Weickert, M. Hein, and B. Schiele, eds.), (Berlin, Heidelberg), pp. 174–183, Springer Berlin Heidelberg, 2013.
- S. Särkkä and L. Svensson, Bayesian Filtering and Smoothing. Second Edition. Institute of Mathematical Statistics Textbooks, Cambridge University Press, 2023.
- M. Simandl and J. Duník, “Sigma point gaussian sum filter design using square root unscented filters,” IFAC Proceedings Volumes, vol. 38, no. 1, pp. 1000–1005, 2005. 16th IFAC World Congress.