Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Analysis of Multiparameter Persistence Decompositions (2403.11939v1)

Published 18 Mar 2024 in math.AT and cs.CG

Abstract: Multiparameter persistence modules can be uniquely decomposed into indecomposable summands. Among these indecomposables, intervals stand out for their simplicity, making them preferable for their ease of interpretation in practical applications and their computational efficiency. Empirical observations indicate that modules that decompose into only intervals are rare. To support this observation, we show that for numerous common multiparameter constructions, such as density- or degree-Rips bifiltrations, and across a general category of point samples, the probability of the homology-induced persistence module decomposing into intervals goes to zero as the sample size goes to infinity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. Decomposition of zero-dimensional persistence modules via rooted subsets. In 39th International Symposium on Computational Geometry, SoCG 2023, 2023. doi:10.4230/LIPIcs.SoCG.2023.7.
  2. Delaunay bifiltrations of functions on point clouds. In Symposium on Discrete Algorithms SODA 2024. doi:10.1137/1.9781611977912.173.
  3. Filtration-domination in bifiltered graphs. In Proceedings of the Symposium on Algorithm Engineering and Experiments, ALENEX 2023. doi:10.1137/1.9781611977561.CH3.
  4. On interval decomposability of 2D persistence modules. Computational Geometry, 105-106:101879, 2022. doi:10.1016/j.comgeo.2022.101879.
  5. A unified view on the functorial nerve theorem and its variations. Expositiones Mathematicae, 41(4):125503, 2023. doi:10.1016/j.exmath.2023.04.005.
  6. Generic multi-parameter persistence modules are nearly indecomposable, 2023. arXiv:2211.15306.
  7. Håvard Bakke Bjerkevik. Stabilizing decomposition of multiparameter persistence modules, 2023. arXiv:2305.15550.
  8. Stability of 2-parameter persistent homology. Foundations of Computational Mathematics. doi:10.1007/s10208-022-09576-6.
  9. Distance functions, critical points, and the topology of random Čech complexes. Homology, Homotopy and Applications, 16(2):311–344, 2014. doi:10.4310/hha.2014.v16.n2.a18.
  10. Topology of random geometric complexes: a survey. Journal of Applied and Computational Topology, 1(3-4):331–364, 2018. doi:10.1007/s41468-017-0010-0.
  11. Maximally persistent cycles in random geometric complexes. The Annals of Applied Probability, pages 2032–2060, 2017. doi:10.1214/16-AAP1232.
  12. A universal null-distribution for topological data analysis. Scientific Reports, 13(1), July 2023. doi:10.1038/s41598-023-37842-2.
  13. On the consistency and asymptotic normality of multiparameter persistent Betti numbers. Journal of Applied and Computational Topology, December 2022. doi:10.1007/s41468-022-00110-9.
  14. An introduction to multiparameter persistence. In 2020 International Conference on Representations of Algebras, page 77–150. EMS Press, November 2023. doi:10.4171/ecr/19/4.
  15. Sparse higher order čech filtrations. In 39th International Symposium on Computational Geometry, SoCG 2023, June 12-15, 2023, Dallas, Texas, USA, pages 20:1–20:17, 2023. doi:10.4230/LIPICS.SOCG.2023.20.
  16. Realizations of indecomposable persistence modules of arbitrarily large dimensions. Journal of Computational Geometry, 13(1), 2022. doi:10.20382/jocg.v13i1a12.
  17. The theory of multidimensional persistence. Discrete & Computational Geometry, 42(1):71–93, 2009. doi:10.1007/s00454-009-9176-0.
  18. Computing the multicover bifiltration. In 37th International Symposium on Computational Geometry, SoCG 2021, pages 27:1–27:17, 2021. doi:10.4230/LIPICS.SOCG.2021.27.
  19. Computing bottleneck distance for 2-D interval decomposable modules. In 34th International Symposium on Computational Geometry, SoCG 2018, pages 32:1–32:15, 2018. doi:10.4230/LIPIcs.SoCG.2018.32.
  20. Generalized persistence algorithm for decomposing multiparameter persistence modules. Journal of Applied and Computational Topology, 6:271–322, 2022. doi:10.1007/s41468-022-00087-5.
  21. Herbert Federer. Curvature measures. Transactions of the American Mathematical Society, 93(3):418–491, 1959. doi:10.2307/1993504.
  22. Miroslav Fiedler. Matrices and graphs in geometry, volume 139 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2011. doi:10.1017/CBO9780511973611.
  23. Compression for 2-parameter persistent homology. Computational Geometry, 109:101940, 2023. doi:10.1016/j.comgeo.2022.101940.
  24. Refinement of interval approximations for fully commutative quivers, 2023. arXiv:2310.03649.
  25. Limit theorems for persistence diagrams. The Annals of Applied Probability, 28(5):2740–2780, 2018. doi:10.1214/17-AAP1371.
  26. Matthew Kahle. Random geometric complexes. Discrete & Computational Geometry, 45(3):553–573, 2011. doi:10.1007/s00454-010-9319-3.
  27. Lectures on the Poisson process, volume 7. Cambridge University Press, 2017.
  28. Interactive Visualization of 2-D Persistence Modules. arXiv:1512.00180.
  29. Computing minimal presentations and bigraded betti numbers of 2-parameter persistent homology. SIAM Journal on Applied Algebra and Geometry, 6(2):267–298, 2022. doi:10.1137/20M1388425.
  30. Order-preserving functions: Applications to majorization and order statistics. Pacific Journal of Mathematics, 23:569–584, 1967.
  31. R. A. Parker. The computer calculation of modular characters (the meat-axe). In Michael D. Atkinson, editor, Computational Group Theory, pages 267–274. New York: Academic Press, 1984.
  32. Bernard W. Silverman. Density Estimation for Statistics and Data Analysis. Springer Netherlands. doi:10.1007/978-1-4899-3324-9.
  33. Larry Wasserman. All of statistics: a concise course in statistical inference, volume 26. Springer, 2004.
  34. D. Yogeshwaran and Robert J. Adler. On the topology of random complexes built over stationary point processes. The Annals of Applied Probability, 25(6):3338–3380, 2015. doi:10.1214/14-AAP1075.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com