Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relation between Value and Age of Information in Feedback Control (2403.11926v1)

Published 18 Mar 2024 in cs.IT, math.IT, and math.OC

Abstract: In this chapter, we investigate the value of information as a more comprehensive instrument than the age of information for optimally shaping the information flow in a networked control system. In particular, we quantify the value of information based on the variation in a value function, and discuss the structural properties of this metric. Through our analysis, we establish the mathematical relation between the value of information and the age of information. We prove that the value of information is in general a function of an estimation discrepancy that depends on the age of information and the primitive variables. In addition, we prove that there exists a condition under which the value of information becomes completely expressible in terms of the age of information. Nonetheless, we show that this condition is not achievable without a degradation in the performance of the system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of information: An introduction and survey,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1183–1210, 2021.
  2. T. Soleymani, Value of Information Analysis in Feedback Control. PhD thesis, Technical University of Munich, 2019.
  3. T. Soleymani, J. S. Baras, and S. Hirche, “Value of information in feedback control: Quantification,” IEEE Trans. on Automatic Control, vol. 67, no. 7, pp. 3730–3737, 2022.
  4. T. Soleymani, J. S. Baras, S. Hirche, and K. H. Johansson, “Value of information in feedback control: Global optimality,” IEEE Trans. on Automatic Control, vol. 68, no. 6, pp. 3641–3647, 2023.
  5. G. M. Lipsa and N. C. Martins, “Remote state estimation with communication costs for first-order LTI systems,” IEEE Trans. on Automatic Control, vol. 56, no. 9, pp. 2013–2025, 2011.
  6. A. Molin and S. Hirche, “Event-triggered state estimation: An iterative algorithm and optimality properties,” IEEE Trans. on Automatic Control, vol. 62, no. 11, pp. 5939–5946, 2017.
  7. J. Chakravorty and A. Mahajan, “Fundamental limits of remote estimation of autoregressive Markov processes under communication constraints,” IEEE Trans. on Automatic Control, vol. 62, no. 3, pp. 1109–1124, 2016.
  8. M. Rabi, G. V. Moustakides, and J. S. Baras, “Adaptive sampling for linear state estimation,” SIAM Journal on Control and Optimization, vol. 50, no. 2, pp. 672–702, 2012.
  9. N. Guo and V. Kostina, “Optimal causal rate-constrained sampling for a class of continuous Markov processes,” IEEE Trans. on Information Theory, vol. 67, no. 12, pp. 7876–7890, 2021.
  10. N. Guo and V. Kostina, “Optimal causal rate-constrained sampling of the Wiener process,” IEEE Trans. on Automatic Control, in press, 2021.
  11. Y. Sun, Y. Polyanskiy, and E. Uysal, “Sampling of the Wiener process for remote estimation over a channel with random delay,” IEEE Trans. on Information Theory, vol. 66, no. 2, pp. 1118–1135, 2019.
  12. T. Soleymani, S. Hirche, and J. S. Baras, “Optimal self-driven sampling for estimation based on value of information,” in Proc. Int. Workshop on Discrete Event Systems, pp. 183–188, 2016.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com