Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hardware Design and Learning-Based Software Architecture of Musculoskeletal Wheeled Robot Musashi-W for Real-World Applications (2403.11729v1)

Published 18 Mar 2024 in cs.RO

Abstract: Various musculoskeletal humanoids have been developed so far. While these humanoids have the advantage of their flexible and redundant bodies that mimic the human body, they are still far from being applied to real-world tasks. One of the reasons for this is the difficulty of bipedal walking in a flexible body. Thus, we developed a musculoskeletal wheeled robot, Musashi-W, by combining a wheeled base and musculoskeletal upper limbs for real-world applications. Also, we constructed its software system by combining static and dynamic body schema learning, reflex control, and visual recognition. We show that the hardware and software of Musashi-W can make the most of the advantages of the musculoskeletal upper limbs, through several tasks of cleaning by human teaching, carrying a heavy object considering muscle addition, and setting a table through dynamic cloth manipulation with variable stiffness.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. H. G. Marques, M. Jäntsh, S. Wittmeier, O. Holland, C. Alessandro, A. Diamond, M. Lungarella, and R. Knight, “ECCE1: the first of a series of anthropomimetic musculoskeletal upper torsos,” in Proceedings of the 2010 IEEE-RAS International Conference on Humanoid Robots, 2010, pp. 391–396.
  2. M. Jäntsch, S. Wittmeier, K. Dalamagkidis, A. Panos, F. Volkart, and A. Knoll, “Anthrob - A Printed Anthropomimetic Robot,” in Proceedings of the 2013 IEEE-RAS International Conference on Humanoid Robots, 2013, pp. 342–347.
  3. Y. Asano, T. Kozuki, S. Ookubo, M. Kawamura, S. Nakashima, T. Katayama, Y. Iori, H. Toshinori, K. Kawaharazuka, S. Makino, Y. Kakiuchi, K. Okada, and M. Inaba, “Human Mimetic Musculoskeletal Humanoid Kengoro toward Real World Physically Interactive Actions,” in Proceedings of the 2016 IEEE-RAS International Conference on Humanoid Robots, 2016, pp. 876–883.
  4. K. Kawaharazuka, S. Makino, K. Tsuzuki, M. Onitsuka, Y. Nagamatsu, K. Shinjo, T. Makabe, Y. Asano, K. Okada, K. Kawasaki, and M. Inaba, “Component Modularized Design of Musculoskeletal Humanoid Platform Musashi to Investigate Learning Control Systems,” in Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2019, pp. 7294–7301.
  5. M. Osada, T. Izawa, J. Urata, Y. Nakanishi, K. Okada, and M. Inaba, “Approach of “planar muscle” suitable for musculoskeletal humanoids, especially for their body trunk with spine having multiple vertebral,” in Proceedings of the 2011 IEEE-RAS International Conference on Humanoid Robots, 2011, pp. 358–363.
  6. S. Makino, K. Kawaharazuka, M. Kawamura, A. Fujii, T. Makabe, M. Onitsuka, Y. Asano, K. Okada, K. Kawasaki, and M. Inaba, “Five-Fingered Hand with Wide Range of Thumb Using Combination of Machined Springs and Variable Stiffness Joints,” in Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018, pp. 4562–4567.
  7. K. Kawaharazuka, S. Makino, M. Kawamura, Y. Asano, Y. Kakiuchi, K. Okada, and M. Inaba, “Human Mimetic Forearm Design with Radioulnar Joint using Miniature Bone-muscle Modules and its Applications,” in Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017, pp. 4956–4962.
  8. H. Kobayashi, K. Hyodo, and D. Ogane, “On Tendon-Driven Robotic Mechanisms with Redundant Tendons,” The International Journal of Robotics Research, vol. 17, no. 5, pp. 561–571, 1998.
  9. K. Kawaharazuka, M. Nishiura, Y. Toshimitsu, Y. Omura, Y. Koga, Y. Asano, K. Okada, K. Kawasaki, and M. Inaba, “Robust Continuous Motion Strategy Against Muscle Rupture using Online Learning of Redundant Intersensory Networks for Musculoskeletal Humanoids,” Robotics and Autonomous Systems, vol. 152, pp. 1–14, 2022.
  10. K. Kawaharazuka, A. Miki, Y. Toshimitsu, K. Okada, and M. Inaba, “Adaptive Body Schema Learning System Considering Additional Muscles for Musculoskeletal Humanoids,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3459–3466, 2022.
  11. C. Alessandro, I. Delis, F. Nori, S. Panzeri, and B. Berret, “Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives,” Frontiers in Computational Neuroscience, vol. 7, no. 43, pp. 1–16, 2013.
  12. K. Kawaharazuka, K. Tsuzuki, M. Onitsuka, Y. Asano, K. Okada, K. Kawasaki, and M. Inaba, “Musculoskeletal AutoEncoder: A Unified Online Acquisition Method of Intersensory Networks for State Estimation, Control, and Simulation of Musculoskeletal Humanoids,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2411–2418, 2020.
  13. K. Kawaharazuka, K. Tsuzuki, M. Onitsuka, Y. Asano, K. Okada, K. Kawasaki, and M. Inaba, “Object Recognition, Dynamic Contact Simulation, Detection, and Control of the Flexible Musculoskeletal Hand Using a Recurrent Neural Network With Parametric Bias,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4580–4587, 2020.
  14. K. Kawaharazuka, N. Hiraoka, K. Tsuzuki, M. Onitsuka, Y. Asano, K. Okada, K. Kawasaki, and M. Inaba, “Estimation and Control of Motor Core Temperature with Online Learning of Thermal Model Parameters: Application to Musculoskeletal Humanoids,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4273–4280, 2020.
  15. K. Kawaharazuka, K. Tsuzuki, M. Onitsuka, Y. Koga, Y. Omura, Y. Asano, K. Okada, K. Kawasaki, and M. Inaba, “Reflex-based Motion Strategy of Musculoskeletal Humanoids under Environmental Contact Using Muscle Relaxation Control,” in Proceedings of the 2019 IEEE-RAS International Conference on Humanoid Robots, 2019, pp. 114–119.
  16. Y. Asano, T. Kozuki, S. Ookubo, K. Kawasaki, T. Shirai, K. Kimura, K. Okada, and M. Inaba, “A Sensor-driver Integrated Muscle Module with High-tension Measurability and Flexibility for Tendon-driven Robots,” in Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015, pp. 5960–5965.
  17. K. Kawaharazuka, K. Tsuzuki, S. Makino, M. Onitsuka, Y. Asano, K. Okada, K. Kawasaki, and M. Inaba, “Long-time Self-body Image Acquisition and its Application to the Control of Musculoskeletal Structures,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2965–2972, 2019.
  18. G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with Neural Networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.
  19. K. Kawaharazuka, S. Makino, M. Kawamura, Y. Asano, K. Okada, and M. Inaba, “Online Learning of Joint-Muscle Mapping using Vision in Tendon-driven Musculoskeletal Humanoids,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 772–779, 2018.
  20. J. Tani, “Self-organization of behavioral primitives as multiple attractor dynamics: a robot experiment,” in Proceedings of the 2002 International Joint Conference on Neural Networks, 2002, pp. 489–494.
  21. K. Kawaharazuka, A. Miki, M. Bando, K. Okada, and M. Inaba, “Dynamic Cloth Manipulation Considering Variable Stiffness and Material Change Using Deep Predictive Model With Parametric Bias,” Frontiers in Neurorobotics, vol. 16, pp. 1–16, 2022.
Citations (3)

Summary

  • The paper demonstrates the integration of bio-inspired musculoskeletal arms with a mechanum-wheeled base for versatile, adaptive task performance.
  • It details a hybrid software architecture combining static and dynamic body schema learning with reflex controls for precise movement and safe operation.
  • Experimental results, including cleaning, heavy object transport, and cloth manipulation tasks, highlight the robot's practical utility in real-world environments.

Musculoskeletal Wheeled Robot Musashi-W: Integrating Flexible Limbs with Wheeled Mobility for Real-World Applications

Hardware Overview

The Musashi-W robot combines musculoskeletal upper limbs with a wheeled base, incorporating both flexible, bio-inspired arm and hand structures and the stability and mobility provided by mechanum wheels. The dual arms feature joint modules, aluminum frames, and various muscle actuators, including integrated sensor-driver muscle modules and miniature bone-muscle modules. These components allow for an adaptable musculature configuration, supporting redundancy and the addition of muscles for task-specific enhancements. The wheeled base utilizes four mechanum wheels, a linear motion mechanism, and a comprehensive circuit system for robust movement and task execution. The design intricacies balance the complexities of a musculoskeletal system with the practicalities of a wheeled robot, aiming for versatile real-world applications.

Software Architecture

The software system underpinning Musashi-W merges static and dynamic body schema learning, reflex control mechanisms, and traditional controls for movement and task operations. Static body schema learning provides a fundamental understanding of the robot's body mechanics, enabling motion control through muscle actuation. Dynamic body schema learning further refines control by accounting for interactions with tools and objects, adjusting for nuanced tasks execution. Reflex controls, including muscle relaxation and thermal management systems, ensure the robot's musculature operates within safe parameters. Additionally, classical controls manage the wheeled base and mechanum wheels for precise movement.

Experimental Demonstrations

Duster Experiment

Through human demonstration using a VR controller, Musashi-W successfully executed a cleaning task, maneuvering to a desk, grasping a duster, and dusting a shelf. This experiment showcased the robot's capability to integrate complex movements and adapt to real-world environments, benefiting from its software and hardware design.

Heavy Object Carrying

Musashi-W demonstrated its task-specific adaptability by carrying a heavy object, utilizing added muscles and relearned static body schemas to perform the task efficiently. By increasing the muscle arrangement complexity, the robot could reduce the maximum muscle tension required, highlighting the benefits of its musculoskeletal design.

Table Setting with Dynamic Cloth Manipulation

In a table setting task, Musashi-W displayed sophisticated dynamic manipulation, adjusting cloth over a table by altering its joint angles and stiffness. The robot's ability to execute such delicate tasks underlines the efficacy of the dynamic body schema learning and its implementation in real-world applications.

Conclusion and Future Prospects

The development of Musashi-W represents a significant step toward the integration of musculoskeletal flexibility and wheeled mobility in robotics, particularly for complex, real-world tasks. The comprehensive software architecture enables the robot to learn and adapt to various tasks dynamically. Future developments will likely focus on further enhancing the robot's learning capabilities, generalizability to more tasks, and autonomous decision-making, broadening the scope of real-world applications for musculoskeletal wheeled robots.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com