Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Specific Emitter Identification Handling Modulation Variation with Margin Disparity Discrepancy (2403.11531v1)

Published 18 Mar 2024 in eess.SP

Abstract: In the domain of Specific Emitter Identification (SEI), it is recognized that transmitters can be distinguished through the impairments of their radio frequency front-end, commonly referred to as Radio Frequency Fingerprint (RFF) features. However, modulation schemes can be deliberately coupled into signal-level data to confound RFF information, often resulting in high susceptibility to failure in SEI. In this paper, we propose a domain-invariant feature oriented Margin Disparity Discrepancy (MDD) approach to enhance SEI's robustness in rapidly modulation-varying environments. First, we establish an upper bound for the difference between modulation domains and define the loss function accordingly. Then, we design an adversarial network framework incorporating MDD to align variable modulation features. Finally, We conducted experiments utilizing 7 HackRF-One transmitters, emitting 11 types of signals with analog and digital modulations. Numerical results indicate that our approach achieves an average improvement of over 20\% in accuracy compared to classical SEI methods and outperforms other UDA techniques. Codes are available at https://github.com/ZhangYezhuo/MDD-SEI.

Summary

We haven't generated a summary for this paper yet.